HD32.1

Termo Microclima

BRASILEIRO

O kit básico para análise de microclima é composto por:

- HD32.1 com o Programa Operacional A: Análise Microclimaticas
- Software DeltaLog10 Ambientes Moderados.

Para poder utilizár os módulos:

- DeltaLog10 Ambientes Quentes e Muito Quentes
- DeltaLog10 Ambientes Frios
- DeltaLog10 Análise de Desconforto

e os programas operacionais (firmware):

- Programa operacional B: Análises de Desconforto
- Programa operacional C: Grandezas Físicas

é necessário realizar a ativação de acordo com as instruções contidas no CDRom DeltaLog10, item "Documentos e Ativaçao do Producto"

O nível de qualidade dos nossos instrumentos é o resultado da melhoria contínua dos nossos produtos. Essa evolução pode trazer algumas diferenças entre a informação escrita neste manual e o instrumento que você adquiriu. Não podemos garantir que este manual está totalmente isento de erros, pelo que nos desculpamos. Os dados, figuras e descrições descritos neste manual não estão juridicamente em vigor. Nos reservamos o direito de fazer alterações e correções sem aviso prévio.

Termo Microclima HD32.1

HD32.1

- 1. Tecla ON/OFF: Liga e desliga o instrumento.
- 2. Tecla TIME: Permite mostrar data e hora, na primeira linha, por cerca de 8 segundos.
- 3. Tecla SHIFT FNC: Ativa a janela Shortcut (Atalho).
- 4. Display gráfico .
- 5. Teclas de funções F1, F2, F3: Ativam a função na linha inferior do display.
- 6. Tecla ENTER: No menu, confirma os dados introduzidos.
- 7. Tecla ESC: Permite sair do menu, ou em caso de submenu sair do atual nível do display.
- 8. Teclas de navegação ▲ ▼ ◄ ► : Permitem navegar pelos menus.
- 9. **Tecla PRINT**: Inicia e finaliza a transferência de dados para a porta de comunicação serial/USB.
- 10. Tecla MEM: Inicia e finaliza a gravação de dados.
- 11. **Tecla SETUP**: Permite entrar e sair do menu de ajuste de parâmetros de funcionamento do instrumento em.
- 12. Entradas SICRAM para sondas.
- 13. Tampa da bateria.
- 14. Porta serial RS232.
- 15. Porta USB.
- 16. Entrada para fornecimento de energia.

TABELA DE CONTEÚDOS

1.	CARACTERÍSTICAS GERAIS	6
2.	PRINCÍPIO DE TRABALHO	8
	2.1 O PROGRAMA OPERACIONAL A: ANÁLISE DO MICROCLIMA	
	2.1.2 Intensidade de Turbulência (índice Tu)	
	2.1.3 Índice WCI	
	2.1.4 Temperatura Média de Radiação t _r	11
	2.2 O PROGRAMA OPERACIONAL B: ANÁLISE DO DESCONFORTO	
	2.2.1 Insatisfação com a diferença vertical de temperatura	
	2.2.2 Insatisfação com a temperatura do piso	14 14
	2.3 O Programa Operacional C: GRANDEZAS FÍSICAS	
3.	A INTERFACE DO USUÁRIO.	
	3.1.1 O Programa Operacional A, Análise de Microclima, Display	
	3.1.2 O Programa Operacional B, Análise do Desconforto, Display	17
	3.1.3 O Programa Operacional C, Grandezas Físicas, Display	17
	3.2 O TECLADO	
4.	OPERAÇÃO	
	4.1 O PROGRAMA OPERACIONAL A: ANÁLISE DE MICROCLIMA	
	4.1.1 Índice DR Index – Draught Risk (Risco de Corrente de ar)	
	4.1.2 Indice WBGT	
	4.1.5 Indice w C1 4.1.4 Temperatura de Radiação Tr	29 29
	4.1.5 A unidade de medição "Unit"	
	4.1.6 Os valores máximo, mínimo e médio das grandezas capturadas	
	4.1.7 Configuração do Instrumento	
	4.1.8 Iniciar uma nova sessão de registro(logging)	
	4.2 U PROGRAMA UPERACIONAL B: ANALISE DE DESCONFORTO	
	4.2.2 Os valores máximo, mínimo e médio das grandezas capturadas.	
	4.3 O PROGRAMA OPERACIONAL C: GRANDEZAS FÍISICAS	
	4.3.1 Ajustando a seção do tubo	
	4.3.2 Os valores máximo, mínimo e médio das grandezas capturadas	
5.	MENU PRINCIPAL	35
	5.1 Menu Info	
	5.2 Menu Logging	
	5.2.1 Intervalo de Registro	
	5.2.2 Modo Auto Desligamento	
	5.2.5 Tempo de inicial/paral – Parada automática	
	5.2.5 Gerenciador do Arquivo Log	
	5.3 MENU SERIAL (COMUNICAÇÃO SERIAL)	
	5.3.1 Taxa Baud	
	5.3.2 O intervalo de impressão	
	5.4 Restaurar	
	5.5 Contraste	
	5.6 FIRMWARE	
	5.7 HORA/DATA	
	5.8 CALIBRAR	
	5.9 TECLA DE BLOQUEIO (KEY LOCK)	
	5.10 Password (Senha)	

6.	SONDAS E MEDIÇÕES	49
	6.1 Sondas dos Programas Operacionais A e B :	49
	6.1.1 Avisos, cuidados e manutenção das sondas	64
	6.2 SONDAS PARA O PROGRAMA OPERACIONAL C: QUANTIDADES FÍSICAS	66
	6.2.1 Medição de Temperatura usando a sonda Pt100 completa com módulo SICRAM	66
	6.2.2 Informações techicas sobre sondas de temperatura Prior usando moduro SICKAM	07 68
	6.2.4 Informações técnicas sobre sondas de umidade relativa e temperatura usando módulo SICRAM	69
	6.2.5 Medição da velocidade do vento	71
	 6.2.6 AP471S Sondas de fio quente para medição da velocidade do vento completas com módulo SICRAN 6.2.7 Informações técnicas sobre sondas de fio quente para medição da velocidade do vento e temperatura usando módulo SICRAM 	<i>A</i> 73
	6.2.8 AP472SSondas ventoinha para medição da velocidade do vento completas com módulo SICRAM	78
	6.2.9 Informações técnicas sobre as sondas ventoinha de medição da velocidade do vento usando r SICRAM	módulo 82
	6.2.10 Medição da Luz	83
	conectadas on line com o instrumento	84 84
	6.2.12 Sonda HD320A2 para medição de concentração de monoxido de carbono CO	91
	6.2.13 Sonda HD320B2 para medição da concentração de dioxido de carbono CO ₂	95
7.	INTERFACE SERIAL E USB	97
	7.1 O PROGRAMA OPERACIONAL A: ANÁLISE DE MICROCLIMA	97
	7.2 O PROGRAMA OPERACIONAL B: ANÁLISE DE DESCONFORTO	99
	7.3 O PROGRAMA OPERACIONAL C: GRANDEZAS FÍSICAS	101
	7.4 Armazenando e transferindo dados para um PC	103
	7.4.1 A função Logging	103
	7.4.2 A runção Erase: Impando a memoria	103
8		10/
0.	8 1 CONEXÃO À DORTA SERIAL RS232-C	104
	8.2 CONEXÃO À PORTA USB 2.0	104
0		104
y.	SINAIS E FALHAS DO INSTRUMENTO	100
10	. SIMBOLO DE BATERIA E SUBSTITUIÇÃO DE BATERIA – FORNECIMENTO EXTERNO DE ENERCIA	107
	10 1 Aviso sobre uso de bateria	108
11	ARMAZENACEM DO INSTRUMENTO	108
11		100
12	CADACTEDÍSTICAS TÉCNICAS	109
13	. CARACTERISTICAS TECNICAS	145
14	. TABELAS EXPLANATORIAS SOBRE O USO DE SONDAS PARA MICROCLIMA	147
	 14.1 Diagramade sondas para HD32.1 Programa operacional A: Análise de microclima 14.2 Diagrama das sondas para HD32.1 Programa operacional B: Análise de Desconforto 	148 151
15	. CÓDIGOS DE PEDIDO	152
	15.1 Sondas Programas Operacionais A e B	154
	15.2 Sondas para Programa Operacional C: Grandezas Físicas	155
	15.2.1 Sondas de Temperatura completas com módulo SICRAM	155
	15.2.2 Sondas combinadas de Unidade Kelativa e Temperatura completas com módulo n SICRAM	155
	15.2.4 Sondas fotométrica/radiométrica para medição de Luz completas com módulo SICRAM	156
	15.2.5 Sonda para medição de dióxido de carbonoo CO ₂ completa com modulo SICRAM	157
	15.2.6 Sonda para medição de monoxído de carbno CO completa com modulo SICRAM	157

1. CARACTERÍSTICAS GERAIS

O termo microclima **HD32.1** foi projetado para análise de microclima no local de trabalho; o instrumento é usado para detectar os parâmetros necessários para estabelecer se um certo local de trabalho é adequado para realizar certas atividades.

O instrumento pode gerenciar **três programas operacionais** os quais podem ser carregados pelo usuário, de acordo com o programa e as quantidades de medições a serem detectadas.

O instrumento tem oito entradas para sondas com módulo SICRAM: As sondas são montadas com um circuito eletrônico que se comunica com o instrumento. Os ajustes de calibração já são memorizados internamente.

Todas as sondas SICRAM, exceto as sondas ventoinha, podem ser plugadas em qualquer entrada: Elas serão automaticamente detectadas ao ligar o instrumento.

OBSERVAÇÃO: A sonda ventoinha, completa com módulo SICRAM, para medição da velocidade do vento pode ser conectada exclusivamente na entrada 8.

O instrumento vem com um sensor de pressão barométrica. A pressão barométrica é mostrada somente pelo programa operacional de Análise de Microclima.

A máquina pode ser programada para realizar o registro(captura) da sessão de medição. Você pode configurar especificamente um intervalo de amostragem para cada sessão.

Em adição, a função auto-start (auto-início) pode ser usada para ativar o ajuste da data e hora inicial das medições, e início e encerramento automático da sessão de registro de dados.

<u>OBSERVAÇÃO:</u> O intervalo de captura ajustado é válido para todas as sondas conectadas à maquina.

Outros parâmetros comuns dos programas operacionais, selecionáveis/ajustáveis pelo usuário são:

- As unidades de medição para as quantidades de temperatura mostradas: °C, °F, °K.
- O sistema de data e hora
- A mostra dos parâmetros estatísticos máximo, mínimo, e médio e sua omissão.
- A velocidade de transferência de dados via porta serial RS232.
- O ajuste e habilitação/desabilitação da senha de proteção do teclado.

Os programas operacionais são:

- prog. A: HD32.1 Análise de Microclima
- prog. B: HD32.1 Análise de Desconforto
- prog. C: HD32.1 Grandezas Físicas

O programa operacional A: Análise de Microclima, HD32.1, pode detectar simultaneamente as seguintes quantidades:

- Temperatura do termômetro Globo
- Temperatura de bulbo úmido de ventilação natural
- Temperatura ambiente
- Pressão atmosférica
- Umidade relativa
- Velocidade do vento

O programa operacional A: Análise de Microclima também mostra:

- A intensidade de turbulência local **Tu**, para cálculo da DR (Taxa Corrente de ar).
- O índice WBGT (Temperatura do Globo de Bulbo Úmido) com ou sem radiação solar.
- O índice WCI (Índice de Resfriamento do Vento)
- A temperatura média da radiação t_r.

O **programa operacional B: Análise de Desconforto,** HD32.1, pode detectar simultaneamente as seguintes quantidades:

- Temperatura do ar detectada na altura da cabeça (1.7 m para uma pessoa em pé; 1.1 m para uma pessoa sentada).
- Temperatura do ar detectada na altura do abdômen (1.1 m para uma pessoa em pé; 0.6 m para uma pessoa sentada).
- Temperatura do ar detectada na altura do tornozelo (0.1 m).
- Temperatura ao nível do piso.
- Temperatura do radiômetro efetivo.
- Radiação efetiva.
- Temperatura assimétrica radiante.

O **programa operacional B: Análise de Desconforto** é usado para calcular os índices de desconforto local devido à gradientes de temperatura vertical ou temperatura assimétrica radiante.

O programa operacional C: Grandezas Físicas, HD32.1, pode detectar simultaneamente as seguintes grandezas físicas:

- Temperatura
- Umidade relativa
- Iluminância, luminância, PAR, radiação
- Velocidade do vento
- Concentração de monóxido de carbono CO.
- Concentração de dióxido de carbono CO₂

Usando o programa operacional C: Grandezas Físicas, você pode gerenciar mais de seis diferentes sondas com modulo SICRAM. Se duas o mais sondas da mesma grandeza física é conectada, o instrumentos reconhecerá apenas uma (exeto sensores de luminosidade) Se, por exemplo, você inserir duas sondas de temperatura Pt100 completas com modulo SICRAM às entradas 1 e 2, a sonda conectada à entrada 1 será imediatamente reconhecida enquanto que a sonda conectada à entrada 2 será ignorada. **As sondas são detectadas ao ligar o instrumento,** por isso, se a sonda for mudada, é necessário desligar o instrumento e liga-lo novamente. Ao ligar o instrumento realiza uma varredura da entrada 1 à entrada 8. O arranjo das sondas em relação às entradas é arbitrário, com exceção das sondas ventoinha.

A sonda ventoinha, completa com módulo SICRAM, para medição da velocidade do vento pode ser conectada exclusivamente na entrada 8.

2. PRINCÍPIO DE TRABALHO

2.1 O PROGRAMA OPERACIONAL A: ANÁLISE DO MICROCLIMA

Por *microclima* entende-se aqueles parâmetros ambientais que influenciam mudança de calor entre a pessoa e os espaços que a circundam, e que determinam o assim chamado "bem estar térmico".

Os fatores climáticos ambientais, junto com o tipo de trabalho realizado, geram uma série de respostas biológicas ligadas ao bem-estar (Conforto) ou mal-estar térmico (Desconforto).

O organismo humano, realmente, tende a manter um balanço térmico, de forma que a temperatura do corpo seja ótima.

O HD32.1, Termo Microclima, através de seu programa operacional A: Análise de Microclima mede as seguintes grandezas:

- t_{nw} : temperatura de bulbo úmido ventilação natural
- *t_g*: temperatura de termômetro de globo
- t_a : temperatura ambiente
- *p_r*: pressão atmosférica
- *RH*: umidade relativa
- *v_a*: velocidade do vento

Em adição às medições diretas realizadas com as sondas conectadas, o instrumento pode calcular diretamente e mostrar os seguintes dados de bem-estar:

- Índice WBGT
- Índice Tu
- Índice WCI
- Temperatura media de radiação t_r

2.1.1 Índice WBGT

O **WBGT** (Temperatura de Globo de Bulbo Úmido) é um dos indices usados para determinar o stress térmico de uma pessoa num ambiente quente. Ele representa o valor, relativo à saída metabólica ligada à atividade de trabalho específico, que causa um stress térmico quando excedida. O índice WBGT combina as medições de temperatura de bulbo úmido de ventilação natural t_{nw} com a temperatura de termômetro de globo t_g e, em algumas situações, com a temperatura do ar t_a . A fórmula de cálculo é a seguinte:

• Interna e externo às edificações sem radiação solar:

 $WBG_{enclosed spaces} = 0.7 t_{nw} + 0.3 t_g$

• Externo às edificações com radiação solar:

$$WBGT_{outdoor\ spaces} = 0.7\ t_{nw} + 0.2\ t_g + 0.1\ t_a$$

onde:

t_{nw}	=	temperatura	de	bulbo	úmido	ventilação	natural;
t_g	=	temperatura		de	termômeti	o globo	;
t_a	= ter	nperatura do ar.					

Os dados medidos devem ser confrontados com os valores limites prescritos pelas normas; quando excedidos você deve :

- Reduzir diretamente o stress térmico no local de trabalho que está sendo examinado;
- Proceder à análise detalhada do stress térmico.

Na tabela a seguir estão relacionados os valores limites dos índices de stress térmico WBGT como são fornecidos pela ISO 7243:

	TAXA META	ABÓLICA, M	VALOR LIMITE WBGT				
CLASSE DE TAXA METABÓLICA	RELATIVO A UNIDADE DE ÁREA DE PELE	TOTAL (PARA A ÁREA MÉDIA DE SUPERFÍCIE DA PELE DE 1.8 m ²)	CALOR D/ CONH	A PESSOA ECIDO	CALOR DA PESSOA NÃO CONHECIDO		
W/m ² W		°C		°C			
0 (LATENTE)	M ≤ 65	M ≤ 117	33		3	2	
1	65 < M ≤ 130	117 < M ≤ 234	30		2	9	
2	130 < M ≤ 200	234 < M ≤ 360	28		2	:6	
3	200 < M ≤ 260	360 < M ≤ 468	AR ESTAGNADO 25	AR NÃO ESTAGNADO 26	AR ESTAGNADO 22	AR NÃO ESTAGNADO 23	
4	M > 260	M > 468	23	25	18	20	

OBSERVAÇÃO – ESTES VALORES TÊM QUE SER DETERMINADOS USANDO UMA TEMPERATURA RETAL DE REFERÊNCIA DE 38°C PARA A PESSOA QUE ESTÁ SENDO EXAMINADA.

Para calcular o índice WBGT, as seguintes sondas devem ser conectadas:

- Sonda de temperatura de bulbo úmido ventilação natural.
- Sonda de termômetro globo
- Sonda de temperatura de bulbo seco, se a medição for realizada com radiação solar.

Para medir o índice WBGT, você deve se referir às seguintes normas:

- ISO 7726
- ISO 7243

2.1.2 Intensidade de Turbulência (índice Tu)

Intensidade de Turbulência: Porcentagem de intensidade de turbulência local, definida como a taxa entre o desvio padrão da velocidade de vento local e a velocidade média do ar local (ISO 7726):

$$Tu = \frac{SD}{v_a} \times 100$$

onde:

 v_a SD = velocidade media do vento local

= desvio padrão da velocidade de vento local

$$\boldsymbol{SD} = \sqrt{\frac{1}{\boldsymbol{n}-1} \cdot \sum_{i=1}^{n} (\boldsymbol{v}_{a_i} - \boldsymbol{v}_a)^2}$$

Do cálculo da turbulência, conhecendo os valores médios da velocidade de vento local e a temperatura ambiente, você pode tirar o **DR** (Taxa de Corrente de ar - Draught Rating), de acordo com ISO 7730:

$$\boldsymbol{DR} = (34 - \boldsymbol{t}_a) \cdot (\boldsymbol{v}_a - 0.05)^{0.62} \cdot (0.37 \cdot \boldsymbol{v}_a \cdot \boldsymbol{Tu} + 3.14)$$

O desconforto da corrente de ar é definido como um resfriamento local indesejado do corpo devido ao deslocamento de ar. O *DR* indica a porcentagem de pessoas insatisfeitas devido à corrente de ar. O índice DR é calculado quando a temperatura vai de 20°C a 26°C e a velocidade média do vento é < 0.5 m/s.

O índice DR é calculado usando o software DeltaLog10.

2.1.3 Índice WCI

WCI (Índice de Resfriamento do Vento - Wind Chill Index) permite uma avaliação sintética dos efeitos do ambiente frio no homem. Ele mostra o índice de resfriamento devido ao vento. Permite avaliar o desconforto percebido durante exposição a baixas temperaturas e vento. O índice não considera o vestuário e a intensidade de trabalho. O índice WCI é calculado pelo instrumento em presença de ar abaixo de 10°C.

A fórmula de cálculo do índice WCI é:

$$WCI = 13.12 + 0.6215 t_a - 11.37 v_a^{0.16} + 0.4275 t_a v_a^{0.16}$$

onde:

 t_a : temperatura do ar (in °C);

 v_a : velocidade do vento (em km/h) calculada a 10 m do piso.

Como o instrumento mede a velocidade do vento a 1.5 m do piso, a formula é corrigida como se segue:

$WCI = 13.12 + 0.6215 t_a - 11.37(1.5 v_{1.5})^{0.16} + 0.4275 t_a (1.5 v_{1.5})^{0.16}$

onde $v_{1.5}$ é a velocidade do vento medida pelo instrumento a 1,5 m do piso.

A tabela a seguir relata alguns valores WCI e os riscos relevantes de queimadura pelo frio (fonte: NOAA – Serviço Nacional de Saúde - National Weather Service).

							Tempe	eratura de	o ar °C					
		10	5	0	-5	-10	-15	-20	-25	-30	-35	-40	-45	-50
	10	8.6	2.7	-3.3	-9.3	-15.3	-21.1	-27.2	-33.2	-39.2	-45.1	-51.1	-57.1	-63.0
	15	7.9	1.7	-4.4	-10.6	-16.7	-22.9	-29.1	-35.2	-41.4	-47.6	-51.1	-59.9	-66.1
~	20	7.4	1.1	-5.2	-11.6	-17.9	-24.2	-30.5	-36.8	-43.1	-49.4	-55.7	-62.0	-68.3
lm/	25	6.9	0.5	-5.9	-12.3	-18.8	-25.2	-31.6	-38.0	-44.5	-50.9	-57.3	-63.7	-70.2
ento _a K	30	6.6	0.1	-6.5	-13.0	-19.5	-26.0	-32.6	-39.1	-45.6	-52.1	-58.7	-65.2	-71.7
	35	6.3	-0.4	-7.0	-13.6	-20.2	-26.8	-33.4	-40.0	-46.6	-53.2	-59.8	-66.4	-73.1
^ 0	40	6.0	-0.7	-7.4	-14.1	-20.8	-27.4	-34.1	-40.8	-47.5	-54.2	-60.3	-67.6	-74.2
de c	45	5.7	-1.0	-7.8	-14.5	-21.3	-28.0	-34.8	-41.5	-48.3	-55.1	-61.8	-68.6	-75.3
ida	50	5.5	-1.3	-8.1	-15.0	-21.8	-28.6	-35.4	-42.2	-49.0	-55.8	-62.7	-69.5	-76.3
loc	55	5.3	-1.6	-8.5	-15.3	-22.2	-29.1	-36.0	-42.8	-49.7	-56.6	-63.4	-70.3	-77.2
ž	60	5.1	-1.8	-8.8	-15.7	-22.6	-29.5	-36.5	-43.4	-50.3	-57.2	-64.2	-71.1	-78.0

Os valores que podem causar queimadura pelo frio em ≤ 30 minutos estão relacionados em negrito.

Resfriamento do vento (°C)	Risco de queimadura pelo frio
> -28	Baixo
-28 to -39	Médio: as partes do corpo expostas podem congelar dentro de 10 a 30 minutos
-40 to -44	Alto: As partes do corpo expostas podem congelar dentro de 5 a 10 minutos (*)
Nível de alarme -44 to -47	Alto: As partes do corpo expostas podem congelar dentro de 2 a 5 minutos (*)
-48 ou mais frio	Alto: As partes do corpo expostas podem congelar em menos que 2 minutos (*)

(*): Com v_a maior do que 50 km/h o processo de queimadura pelo frio pode ser mais rápido.

Para calcular o índice WCI, as seguintes sondas podem ser conectadas :

- A sonda de temperatura de bulbo seco para medição de temperatura do ar t_a.
- A sonda de fio quente para medição da velocidade do vento.

Para medir o índice WCI, verificar as seguintes normas:

- ISO 7726
- Especificações NOAA, Serviço Nacional de Saúde (National Weather Service).

2.1.4 Temperatura Média de Radiação t_r

A temperatura media de radiação é definida como a temperatura de uma ambiente simulado termicamente uniforme que deveria trocar com o homem a mesma energia de radiação térmica trocada no ambiente real.

Para avaliar a temperatura de radiação média que você deve medir: A temperatura do termômetro globo, a temperatura do ar e a velocidade do vento medida perto do termômetro globo. A fórmula de cálculo da temperatura de radiação média é a seguinte:

• No caso de convecção natural:

$$\boldsymbol{t}_{r} = \left[\left(\boldsymbol{t}_{g} + 273 \right)^{4} + \frac{0.25 \times 10^{8}}{\varepsilon_{g}} \left(\frac{\left| \boldsymbol{t}_{g} - \boldsymbol{t}_{a} \right|}{\boldsymbol{D}} \right)^{1/4} \times \left(\boldsymbol{t}_{g} - \boldsymbol{t}_{a} \right) \right]^{1/4} - 273$$

• No caso de convecção forçada:

$$\boldsymbol{t}_{r} = \left[\left(\boldsymbol{t}_{g} + 273 \right)^{4} + \frac{1.1 \times 10^{8} \times \boldsymbol{v}_{a}^{0.6}}{\varepsilon_{g} \times \boldsymbol{D}^{0.4}} \left(\boldsymbol{t}_{g} - \boldsymbol{t}_{a} \right) \right]^{1/4} - 273$$

onde:

D = diâmetro do termômetro globo

- $\varepsilon_g = 0,95$ emissividade assumida do termômetro globo
- t_g = temperatura do termômetro globo
- t_a = temperatura do ar
- v_a = velocidade do vento

A temperatura média de radiação não corresponde à temperatura do ar: se dentro de uma sala estão presentes superfícies com temperaturas muito altas (por exemplo, lareiras). Estas áreas quentes notadamente influenciam a temperatura média de radiação. A temperatura média de radiação é detectada com o termômetro globo. Uma sonda de temperatura formada por uma esfera de cobre de 150mm, pintada com um banho negro, com emissividade igual a $\varepsilon_g = 0.95$ (de acordo com **ISO** 7726), e um sensor Pt100 dentro.

A temperatura do termômetro globo poderia ser notadamente maior do que a temperatura do ar. Por exemplo, em uma cabana na montanha , na qual o ar está a 0°C mas a presença de lareira produz uma temperatura média de radiação de 40°C, assegurando uma condição confortável. Em condições normais, manter uma certa diferença entre a temperatura média de radiação e a temperatura do ar (onde T_{MR} é notadamente maior do que T_A) é preferível para obter uma melhor qualidade ambiente. Em casas, onde lareiras e fogões estão ausentes, geralmente a temperatura média de radiação é igual à temperatura do ar, ou até mesmo mais baixa. Estas condições (principalmente em edifícios com janelas de superfícies grandes) não são particularmente saudáveis pois o ar úmido e quente facilita o desenvolvimento de organismos patogênicos. Deste ponto de vista, usar lâmpadas ou painéis radiantes é o mais saudável. É muito mais higiênico usar uma temperatura média de radiação mais alta do a temperatura do ar, para garantir as condições de conforto. As normas usam a temperatura do ar, e não temperatura média de radiação para estimar o sistema de aquecimento, mas isto está errado.

Para calcular a temperatura de radiação média você deve conectar as seguintes sondas:

- Sonda de termômetro globo
- Sonda de medição de temperatura do ar
- Sonda de fio quente para medição da velocidade do vento

Para medir a temperatura média de radiação, você deve verificar as seguintes normas:

• ISO 7726

2.2 O PROGRAMA OPERACIONAL B: ANÁLISE DO DESCONFORTO

O HD32.1, Termo Microclima, através de seu programa operacional B: Análise de Desconforto, mede as seguintes grandezas.

- t_h temperatura da cabeça: temperatura do ar detectada na altura da cabeça
- *t_b*: temperatura do corpo: temperatura do ar detectada na altura do abdômen
- t_k : temperatura do tornozelo: temperatura do ar detectada na altura do tornozelo
- *t_f*: temperatura do piso: temperatura do ar ao nível do piso
- *P*: radiação efetiva: radiação efetiva, medida em *Wm*⁻².

Conhecendo a temperatura na altura da cabeça t_h , abdômen t_b , tornozelos t_k e piso t_f , você pode determinar, de acordo com **ISO 7730**, edição de Fevereiro de 2006, capítulo 6, os seguintes índices de desconforto térmico local:

- Insatisfação com diferença vertical de temperatura;
- Insatisfação com a temperatura do piso;
- Insatisfação com a assimetria radiante.

2.2.1 Insatisfação com a diferença vertical de temperatura

Detectando as temperaturas nas várias alturas você pode verificar a presença de um gradiente vertical da temperatura do ar. Este gradiente poderia provocar um sentimento de desconforto local. Na figura abaixo você pode ver o valor percentual da **insatisfação com a diferença vertical de temperatura** PD_{ν} , de acordo com o gradiente de temperatura entre a cabeça (1,10m) e os tornozelos (0,10m) para uma pessoa sentada. Este índice é calculado usando o software DeltaLog10.

Para calcular o índice PD_{ν} (insatisfação com a diferença vertical de temperatura) você pode conectar as seguintes sondas:

- Sonda para temperatura do ar detectada na altura da cabeça
- Sonda para temperatura do ar detectada na altura do tornozelo

O índice PD_v é calculado pelo software DeltaLog10.

Para calcular o índice PD_v (insatisfação com a diferença vertical de temperatura) você deve verificar as seguintes normas:

• ISO 7730

2.2.2 Insatisfação com a temperatura do piso

Medindo a temperatura do piso você pode calcular o índice percentual de insatisfação com a temperatura do piso. O diagrama a seguir mostra a tendência do índice PD_f de acordo com a temperatura do piso.

Para calcular o índice PD_f (insatisfação com a temperatura do piso) você deve conectar a seguinte sonda:

• Sonda de temperatura do piso

O índice *PD_f* é calculado pelo software DeltaLog10.

Para calcular o índice PD_f (insatisfação com a temperatura do piso) você deve verificar as seguintes normas:

• ISO 7730

2.2.3 Insatisfação com a assimetria radiante

A assimetria de temperatura radiante Δt_{pr} é a diferença entre a temperatura radiante medida com o radiômetro efetivo. O índice de insatisfação com a assimetria radiante é calculado de acordo com a assimetria vertical (teto-piso) ou horizontal (parede-parede). Na fórmula da temperatura radiante Δt_{pr} , medida pelo instrumento, você pode determinar a **porcentagem da insatisfação com a assimetria radiante usando software DeltaLog10.** Esta é mostrada na figura abaixo.

Para calcular a porcentagem de insatisfação com a temperatura do piso você deve conectar a seguinte sonda:

• Sonda de radiômetro efetivo para medição de temperatura radiante

A porcentagem de insatisfação com a assimetria radiante é calculada usando o software DeltaLog10.

Para calcular a porcentagem de insatisfação com a assimetria radiante você deve verificar as seguintes normas:

• ISO 7730

2.3 O PROGRAMA OPERACIONAL C: GRANDEZAS FÍSICAS

O HD32.1, Termo Microclima, através do seu programa operacional C: Grandezas Físicas, mede as seguintes quantidades:

- Temperatura.
- Umidade relativa e medições resultantes.
- Iluminância, luminância, PAR, radiação.
- Velocidade do vento e medições resultantes.
- Concentração de monóxido de carbono CO.
- Concentração de dióxido de carbono CO₂.

3. A INTERFACE DO USUÁRIO

A interface do usuário consiste de um display LCD e de teclas de energia, função e ajuste. Ligar e desligar o instrumento com a tecla **ON/OFF**. Quando você ligar o instrumento, o logo e o modelo serão mostrados por alguns segundos, e então aparece o display principal.

3.1 O DISPLAY

O display muda de acordo com o programa operacional carregado.

3.1.1 O Programa Operacional A, Análise de Microclima, Display

O display principal do Termo Microclima HD32.1, é dividido em três áreas:

](0:45:50
Tnw	20.4°	Pr ´	1008.3
Tg	20.2°	RH	42.0
Та	20.1°	Va	0.00
WI		20.2	°C
indo	or		outdoor

A primeira área mostra o estado da carga da bateria e hora atual na primeira linha e as quantidades medidas arranjadas em duas colunas:

- **Tnw:** temperatura de bulbo úmido ventilação natural
- Tg: temperatura de termômetro globo
- Ta: temperatura ambiente
- Pr: pressão atmosférica
- **RH:** umidade relativa
- Va: velocidade do vento

A Segunda área mostra as medições resultantes, isto é, os índices WBGT interno e externo (WI e WO), o WCI e a temperatura radiante média Tr (veja o capítulo anterior para mais detalhes).

A terceira área mostra as opções F1, F2 e F3. Verifique por favor a tecla SHIFT FNC no parágrafo seguinte.

3.1.2 O Programa Operacional B, Análise do Desconforto, Display

O display principal do **Termo Microclima HD32.1**, é dividido em três áreas:

		10:45:50
Th	20.4°C Tk	20.3°C
Tb	20.2°C Tf	20.0°C
Tn	20.1°C P	10W/m2
DT	20.	0 °C
°C	°F	°K ∣

A primeira área mostra **o estado da carga da bateria** e **hora** atual na primeira linha e as **grandezas medidas** arranjadas em duas colunas:

 Th: temperatura da cabeç Tb: temperatura do corpo Tn: temperatura efetiva: Tk: temperatura no torno Tf: temperatura do piso: P: radiação efetiva: 	ca: temperatura do ar detectada na altura da cabeça temperatura do ar detectada na altura do abdômen temperatura do radiômetro efetivo zelo: temperatura do ar detectada na altura do tornozelo temperatura do ar detectada ao nível do piso radiação efetiva, medida em Wm^{-2}
--	---

A segunda área mostra a temperatura de assimetria radiante **DT**. Conhecendo este parâmetro você pode obter **a porcentagem de insatisfação com a assimetria radiante** usando o DeltaLog10, de acordo com a ISO 7730.

A terceira área mostra as opções F1, F2 e F3. Verifique por favor a tecla SHIFT FNC no parágrafo seguinte.

3.1.3 O Programa Operacional C, Grandezas Físicas, Display

O display do **Programa Operacional C: Grandezas Físicas** do **Termo Microclima HD32.1**, mostra a quantidade de sondas conectadas às entradas do instrumento.

O display é dividido em três áreas

A primeira área (primeira linha) mostra o **estado de carga da bateria**, a **data** e **hora** atual e o tipo de sonda:

Mensagem mostrada	Sonda SICRAM mostrada
TEMPE	Sonda Pt100
RH-TEMPE	Sonda combinada de RH-temperatura
AIR-TEMP	Sonda Ventoinha ou sonda de fio quente e sonda de temperatura
LUX	Sonda de Luz
CO	Sonda de CO
CO2	Sonda de CO ₂

A segunda área do display mostra as medições detectadas pelas sondas. Cada display está associado à sonda pertinente. Para mostrar as medições pressionar F3 quando aparecer a mensagem **next** (próxima) na última linha.

A terceira área mostra as opções F1, F2 e F3. Favor verificar a tecla SHIFT FNC no parágrafo seguinte.

Se uma sonda de temperatura Pt100 com módulo SICRAM estiver presente, aparece o seguinte:

A primeira linha do display mostra "TEMPE." Indicando que a temperatura da sonda Pt100 completa com módulo SICRAM é mostrada.

Pressionando-se repetidamente **F1** com **unit** na última linha, você pode mudar a unidade de medição: As unidades disponíveis são °C e °F; pressionando **F1** novamente você pode retornar para °C.

Pressionando F3 com next na última linha, você vai para sonda combinada de umidade/temperatura completa com módulo SICRAM:

∎ + RH	58.0	TEMPE %
Τ.	25.0	°C
unit	sel	next

A primeira linha do display mostra "**RH-TEMPE**" indicando que as medições da **sonda combinada de umidade/temperatura** completa com módulo SICRAM são mostradas.

A segunda linha mostra a umidade relativa. A terceira linha mostra a temperatura.

Para mudar a unidade de medição pressione F2 enquanto sel é mostrado na última linha.

Pressionando F1 quando a segunda linha for selecionada, você pode mudar a unidade de medição da umidade relativa:

As unidades de medição disponíveis são :

- RH: % de umidade relativa (%RH Umidade Relativa)
- SH: Gramas de vapor em um kilograma de ar seco (g/Kg Umidade Específica, calculada)
- AH: Gramas de vapor em um metro cúbico de ar seco $(g/m^3 Umidade Absoluta, calculada)$
- **Pa:** Pressão parcial de vapor (**hPa**, calculada)
- **H**: Entalpia (**J**/**g**, calculada)
- Td: Ponto de Orvalho(°C ou °F, calculado)
- Tw: Temperatura de bulbo úmido (°C ou °F)

Pressionando F1 quando a terceira linha for selecionada, você pode mudar a unidade de medição de temperatura: As unidades disponíveis são °C e °F; pressionando F1 novamente você pode retornar para °C.

Pressionando F3 com next na última linha, você vai para sonda combinada velocidade/temperatura completa com módulo SICRAM: As sondas ventoinha para medição de velocidade do vento podem ser exclusivamente conectadas na entrada 8. O display é o que se segue:

A primeira linha do display mostra "AIR-TEMP" indicando que são mostradas as medições da sonda combinada de velocidade/temperatura completa com módulo SICRAM.

A segunda linha mostra a velocidade do vento. A terceira linha mostra a medição da taxa de fluxo. Para obter essa medição, você deve configurar a seção do duto (veja no próximo parágrafo). A quarta linha mostra a temperatura, se requerida.

Para mudar a unidade de medição, pressionar F2 enquanto sel é mostrado na última linha.

Pressionando **F1** quando a segunda linha for selecionada, você pode mudar a unidade de medição da velocidade do vento:

As unidades de medição para velocidade do vento são:

- m/s
- km/h
- ft/min
- mph (milha/hora)
- knot

Pressionando F1 quando a terceira linha for selecionada, você pode mudar a unidade de medição da taxa de fluxo:

As unidades de medição para a taxa de fluxo são:

- l/s (litro/s)
- m^3/s
- m^3/min
- m³/h
- ft^3/s
- ft³/min

Pressionando **F1** quando a Quarta linha for selecionada, você pode mudar a unidade de medição da temperatura: As unidades disponíveis são °C e °F; pressionando **F1** novamente você pode retornar para °C.

Pressionando F3 quando a ultima linha for selecionada, você ira para sensores de luz com modulo SICRAM.:

A primeira linha do display mostra a sigla "LUX" indicando a unidade de medição de uma sonda de luminosidade com mudulo SICRAM.

Para mudar a unidade de medição, selecione uma das duas linhas com a tecla F2 e então pressione F1 repetitivamente:

As unidades disponíveis de medição dependem do tipo de sonda:

Tipo de Medição	Unidade de Medição
Iluminância (Phot)	lux - fcd
Radiação (RAD - UVA - UVB - UVC)	W/m^2 - $\mu W/cm^2$
PAR	μ mol/(m ² ·s)
Luminância (LUM 2)	cd/m ²

Pressionando a tecla de função F3 quando na ultima linha esta escrito NEXT você vizualizará as unidades de medição detectadas para o sensor de CO_2 com modulo SICRAM. A visualização será da seguinte forma :

A primeira linha do display indica a sigla CO_2 , indicando que a concentração de dióxido de carbono detectada por um sensor de CO_2 com modulo SICRAM esta sendo mostrada no dispaly.

A unidade de medição em ppm (partes por milhão) não pode ser modificada .

Quando o instrumento é ligado, é realizado um "warm-up" (aquecimento) do sensor de aproximadamente 30 segundos antes da visualização das medições de CO₂. A palavra "warm-up" permanece por mais 30 segundos ao lado do valor medido para indicar que os valores ainda não podem ser declarados dentros dos limites de prescição. Quando a palavra "warm-up" desaparece, o instrumento esta pronto para o trabalho.

O sensor é calibrado pela fabrica e usualmente não requer intervenção do usuario.

No entando, é possível re-calibrar o sensor: veja capitulo dedicado ao sensor "Sensor HD320B2 para medições de concentração dedioxido de carbono CO₂.

Pressionando a tecla de função F3 quando na ultima linha esta escrito NEXT você vizualizará as unidades de medição detectadas para o sensor de CO com modulo SICRAM. A visualização será da seguinte forma:

A primeira linha do display indica a sigla CO, indicando que a concentração de dióxido de carbono detectada por um sensor de CO com modulo SICRAM esta sendo mostrada no dispaly

A unidade de medição em ppm (partes por milhão) não pode ser modificada .

Quando o instrumento é ligado, é realizado um "warm-up" (aquecimento) do sensor de aproximadamente 30 segundos antes da visualização das medições de CO. A palavra "warm-up" permanece por mais 30 segundos ao lado do valor medido para indicar que os valores ainda não podem ser declarados dentros dos limites de prescição. Quando a palavra "warm-up" desaparece, o instrumento esta pronto para o trabalho.

O sensor é calibrado pela fabrica e usualmente não requer intervenção do usuario.

No entando, é possível re-calibrar o sensor: veja capitulo dedicado ao sensor "Sensor HD320A2 para medições de concentração dedioxido de carbono CO

Pressionando **F3** ao final do ciclo, com **next** na última linha, você vai para a sonda de temperatura Pt100 completa com módulo SICRAM.

Se uma das sondas não estiver presente quando o instrumento for ligado, o display correspondente é desabilitado.

3.2 O TECLADO

As teclas no instrumento realizam as seguintes funções:

Tecla ON-OFF

Liga e desliga o instrumento.

Ao ligar o instrumento use esta tecla, a primeira tela será mostrada. Depois de uns poucos segundos as grandezas medidas serão mostradas.

OBSERVAÇÃO: Se nenhuma sonda estiver conectada ao ligar, somente a pressão barométrica será mostrada. A outra grandeza será indicada por traços, no lugar do valor.

Tecla TIME

Permite mostrar **ano/mês/dia** e **hora/minuto/segundo**, na primeira linha por cerca de 8 segundos. Normalmente o display mostra, à esquerda, o ícone **mat** para estado de carga da bateria, à direita, hora/minutos/segundos. O símbolo da bateria passa a ser esse **[~]** quando uma fonte externa de suprimento de energia estiver conectada.

Tecla SHIFT FUNCTION

Ativa a janela Shortcut (Atalho). A figura mostra o menu de Atalho para o programa operacional **Análise de Microclima.**

Tnw	20.4°	Ρ	draught wbgt	
Tg	20.2°	R	wci	
Та	20.1°	V	trad	
WI		2	data	
			FUNC	

Teclas de função F1, F2, F3

Estas são as "teclas de função": Elas ativam a função na última linha do display (indicada pela seta na figura); a função, habilitada por **SHIFT FNC,** é selecionada e mostrada ao "contrário" (isto é na figura a função"WBGT indoor" do programa operacional **Análise de Microclima** está habilitada)

indo	or		outdoor
WI		20.2	°C
Та	20.1°	Va	0.00
Tg	20.2°	RH	42.0
Tnw	20.4°	Pr 1	008.3
		10):45:50

Tecla SETUP

Permite entrar e sair do menu de configuração de parâmetros de funcionamento do instrumento.

Tecla ENTER

No menu, confirma a entrada de dados.

Tecla ESC

Permite sair do menu ou, no caso de um submenu, sair do atual nível de display.

Tecla MEM

Permite iniciar e finalizar a sessão "logging" (registro); o intervalo de envio de dados deve ser ajustado no menu.

Tecla PRINT

Permite a impressão direta de dados através da porta serial; o intervalo de envio de dados deve ser ajustado no menu.

Permite navegar através dos menus.

4. OPERAÇÃO

Após ligar o instrumento, conectar as sondas SICRAM às entradas: conectores macho 8-polos DIN45326, localizados na parte inferior do instrumento (veja a figura na página 2), de acordo com a medição a ser realizada.

<u>OBSERVAÇÃO</u>: Conectar as sondas quando o instrumento estiver desligado. Se a sonda for conectada e o instrumento estiver ligado, ela será ignorada. Neste caso, é necessário desligar e ligar o instrumento novamente.

Se a sonda for conectada quando o instrumento estiver ligado, será ouvido um sinal acústico (um beep por segundo) e uma indicação no display correspondente à grandeza física sendo desconectada. A mensagem "LOST" será mostrada.

Se você conectou múltiplas sondas do mesmo tipo, somente a primeira sonda reconhecida será aceita (as duas primeiras no caso de sensores de luz): A varredura das sondas é iniciada das entradas de 1 a 8.

O sensor de pressão barométrica é interno: Após ligar o instrumento, nenhuma sonda deverá ser conectada, somente o valor atmosférico é mostrado.

Ao ligar o instrumento, a seguinte mensagem é mostrada por cerca de 10 segundos:

em adição ao logo da Delta Ohm logo e tab nome é mostrado o código do programa operacional:

- prog. A:
- prog. B:
- HD32.1 Análise do Desconforto

HD32.1 Análise de Microclima

• prog. C: HD32.1 Grandezas Físicas

4.1 O PROGRAMA OPERACIONAL A: ANÁLISE DE MICROCLIMA

Conectar as sondas. Ligar o instrumento: depois de 10 segundos, aparecerá o modo display de medição:

		10):45:50
Tnw	20.4°	Pr 1	008.3
Tg	20.2°	RH	42.0
Та	20.1°	Va	0.00
WI		20.2	°C
indoor outdoor			

O símbolo da bateria e a hora corrente aparecerão na parte superior à esquerda (para mais detalhes veja parágrafo 10).

As seguintes grandezas são relatadas:

- **Tnw:** Temperatura úmida, medida pela sonda de bulbo úmido de ventilação natural
- Tg: Temperatura do termômetro globo, medida por sonda de temperatura de termômetro
- **Ta:** Temperatura ambiente, medida por sonda Pt100
- **Pr:** Pressão barométrica, medida por um sensor interno
- RH: Umidade relativa, medida por uma sonda combinada de umidade/temperatura
- Va: Velocidade do vento, medida por uma sonda de fio quente

Uma grandeza resultante é mostrada na parte central do display: Neste exemplo, o índice WI isto é, o índice WBGT medido internamente ou externamente sem radiação solar.

Para selecionar o índice mostrado, pressionar SHIFT FNC: um submenu é mostrado com as seguintes informações:

- draught: índice DR: risco de corrente
- **wbgt**: índice WBGT: temperatura de globo de bulbo úmido
- wci: índice WCI: índice de resfriamento do vento
- trad: temperatura media de radiação Tr
- unit: unidade de medição de temperatura
- data: valores máximo, mínimo e médio

4.1.1 Índice DR Index – Draught Risk (Risco de Corrente de ar)

Para calcular o índice DR você precisa conhecer a **intensidade de turbulência** Tu obtida da velocidade do vento. Para o cálculo da intensidade de turbulência Tu, o instrumento inicia um procedimento automático para capturar a velocidade do vento dentro de um intervalo pré ajustado; ao final, o instrumento mostra o valor porcentual de intensidade de turbulência. O software DeltaLog10 é então usado para obter o índice DR.

Para iniciar o cálculo do índice Tu, proceder como se segue, depois de abrir o sub menu com SHIFT FNC:

- 1. Use as teclas de setas $\blacktriangle \nabla$ para selecionar "draught";
- 2. Pressionar ENTER para confirmar: a mensagem *Tu* é mostrada na linha central do display;
- 3. Pressionar ESC para sair do sub menu sem fazer qualquer alteração. A seguinte tela vai aparecer:

Pressionar F1 para iniciar o procedimento de captura:

Na primeira linha, o símbolo TU pisca e a mensagem **start (iniciar)** é substituída por **running** (funcionando), indicando que o procedimento foi iniciado.

Tnw Tg Ta Tu	- TU - 20.4° 20.2° 20.1°	۱ Pr RH Va 00.0	0:45:50 1008.3 42.0 0.00 %
F1		2	F3

depois de alguns segundos o símbolo TU vai desaparecer, a mensagem **running** será substituída por **start** e o valor de intensidade de turbulência será mostrado.

4.1.2 Índice WBGT

Para mostrar o índice *WBGT* proceder como se segue, depois de abrir o sub menu com SHIFT FNC:

- 1. Use as teclas de setas $\blacktriangle \nabla$ para selecionar WBGT;
- 2. Pressionar ENTER para confirmar: A grandeza selecionada vai aparecer na linha central do display;
- 3. Pressionar ESC para sair do submenu sem fazer nenhuma alteração.

Agora você pode mostrar os valores *Indoor* (*WI*) ou *Outdoor* (*WO*), selecionando-os pelo uso das teclas F1 ou F3 (veja figura).

		10):45:50
Tnw	20.4°	Pr 1	008.3
Tg	20.2°	RH	42.0
Та	20.1°	Va	0.00
WI		20.2	°C
indoor outdoor			

4.1.3 Índice WCI

Para mostrar o índice WCI proceda como se segue, depois de abrir o submenu com SHIFT FNC:

- 1. Use as teclas de setas $\blacktriangle \nabla$ para selecionar WCI;
- 2. Pressionar ENTER para confirmar: A grandeza selecionada vai aparecer na linha central do display;
- 3. Pressionar ESC para sair do submenu sem fazer nenhuma alteração.

4.1.4 Temperatura de Radiação Tr.

Para mostrar a temperatura de radiação *Tr*, proceder como se segue depois de abrir o submenu com SHIFT FNC:

- 1. Use as teclas de setas $\blacktriangle \lor$ para selecionar **TRAD**;
- 2. Pressionar ENTER para confirmar: A grandeza selecionada vai aparecer na linha central do display;
- 3. Pressionar ESC para sair do submenu sem fazer nenhuma alteração.

4.1.5 A unidade de medição "Unit"

Usando o menu "Functions" você pode mostrar a temperatura em graus °C (Celsius), °F (Fahrenheit) ou °K (Kelvin) como se segue:

- 1. Use SHIFT FNC para abrir o sub menu;
- 2. Use as teclas de setas $\blacktriangle \nabla$ para selecionar *unit*;
- 3. Pressionar ENTER para confirmar: A grandeza selecionada vai aparecer na linha central do display;
- 4. As três unidades diferentes de medição de temperatura são mostradas na linha inferior do display, usando F1, F2 ou F3: A unidade é selecionada e mostrada perto do valor mostrado na linha central;
- 5. Pressionar ESC para sair do sub menu sem fazer nenhuma alteração.

4.1.6 Os valores máximo, mínimo e médio das grandezas capturadas

Para mostrar os valores máximo, mínimo e médio das grandezas medidas, proceder como se segue:

- 1. Use SHIFT FNC para abrir o sub menu;
- 2. Use as teclas de setas $\blacktriangle \nabla$ para selecionar data;
- 3. Pressionar **ENTER** para confirmar: A grandeza selecionada vai aparecer na linha central do display;
- 4. As três grandezas *max* (máximo), *min* (mínimo) e *avg* (média) são mostradas na linha inferior do display, usando F1 ou F2.

<u>OBSERVAÇÃO</u>: uma vez selecionada, por exemplo *max*, todas as grandezas mostradas representam o valor máximo. A media é calculada nos primeiros cinco minutos de amostras, e então sobre a média atual.

A tecla F3 permite escolher para limpar (*Clr*) os dados máximo, mínimo e médio das medições capturadas:

- 1. Para limpar os dados, selecionar *Clr* com F3;
- 2. Outro sub menu será aberto;
- 3. Use as teclas de setas $\blacktriangle \nabla$ para selecionar *yes*;
- 4. Pressionar ENTER para confirmar.
- 5. Pressionar ESC ou selecionar no, para sair sem limpar os dados.

4.1.7 Configuração do Instrumento

Para ajustar o instrumento, você precisa abrir o menu principal pressionando **SETUP**. Veja mais detalhes no próximo capítulo.

4.1.8 Iniciar uma nova sessão de registro(logging)

Pressionar **MEM** para iniciar uma sessão **Logging:** Esta tecla inicia e finaliza o registro de um bloco de dados a ser salvo na memória interna do instrumento. A freqüência de registro de dados é ajustada no parâmetro do menu **"Log interval"**. Os dados registrados entre um início e uma subsequente parada representam um bloco de dados.

Quando a função logging estiver ligada, a indicação *LOG* é mostrada, o símbolo de bateria pisca e um beep é emitido a cada vez que ocorrer um registro. Para terminar o registro, pressionar **MEM** novamente.

O instrumento pode desligar durante o registro entre uma captura e a próxima: A função é controlada pelo parâmetro **Auto_shut_off_Mode**. Quando o intervalo de registro for menor que um minuto, o instrumento permanece ligado; com um intervalo de pelo menos um minuto, ele desliga entre uma captura e a próxima.

4.2 O PROGRAMA OPERACIONAL B: ANÁLISE DE DESCONFORTO

Conectar as sondas. Ligar o instrumento: Depois de alguns segundos, o modo display de medição vai aparecer:

■∎ ⁺ Th Tb Tn	25.0 °C TI 25.0 °C Tf 25.0 °C P	10:45:50 25.0 °C 25.0 °C W/m2
DT	0.0	D°
°C	°F	°K

O símbolo de carga da bateria e a hora corrente estão na parte superior à esquerda (para mais detalhes, veja o par.10).

As seguintes grandezas são relatadas:

- **Th:** Temperatura do ar detectada na altura da cabeça (1,7 m para uma pessoa em pé; 1,1 m para uma pessoa sentada)
- **Tb:** Temperatura do ar detectada na altura do abdômen (1.1 m para uma pessoa em pé; 0.6 m para uma pessoa sentada)
- **Tn:** Temperatura de radiômetro efetivo
- **Tk:** Temperatura do ar detectada na altura do tornozelo(0,1 m)
- Tf: Temperatura ao nível do piso
- P: Radiação efetiva
- DT: Temperatura de assimetria radiante

Pressionando SHIFT FNC, um sub menu é mostrado com as seguintes informações:

- unit: permite selecionar a unidade de medição
- data: permite mostrar os valores máximo, mínimo, e médio

4.2.1 A unidade de medição "Unit"

Proceder como se segue para acessar a função unit :

- Use SHIFT FNC para abrir o sub menu;
- Use as teclas de setas $\blacktriangle \nabla$ para selecionar *unit*;
- Pressionar ENTER para confirmar: a grandeza selecionada é mostrada na linha central do display;
- As três diferentes unidades de temperatura de medição são mostradas na linha inferior do display, usando F1, F2 ou F3: A unidade é selecionada e mostrada perto do valor apresentado na linha central;
- Pressionar ESC para sair do sub menu sem fazer qualquer mudança.

4.2.2 Os valores máximo, mínimo e médio das grandezas capturadas

Proceder como se segue para acessar a função data:

- Use **SHIFT FNC** para abrir o sub menu;
- Use as teclas de setas $\blacktriangle \nabla$ para selecionar data;
- Pressionar ENTER para confirmar:a grandeza selecionada é mostrada na linha central do display;
- As três grandezas *max* (máximo), *min* (mínimo) e *avg* (médio) são mostradas na linha inferior do display, usando F1 ou F2.

A tecla F3 permite escolher para limpar (*Clr*) os dados máximo, mínimo e médio das medições capturadas:

- Para limpar os dados, selecionar *Clr* com F3;
- Outro sub menu sera aberto;
- Use as teclas de setas ▲ ▼ para selecinar *yes*;
- Pressionar ENTER para confirmar.
- Pressionar ESC ou selecione *no*, para sair sem limpar os dados.

4.3 O PROGRAMA OPERACIONAL C: GRANDEZAS FÍISICAS

Conectar as sondas. Ligar o instrumento: Depois de alguns segundos, o modo display de medição vai aparecer (de acordo com a página selecionada): Para mudar de um display para outro, pressionar **F3**.

fig. 1-a: Display de medição usando a sonda Pt100 SICRAM fig. 1-b: Display de medição usando a sonda combinada de umidade/temperatura SICRAM fig. 1-c: Display de medição usando a sonda combinada velocidade/temperatura SICRAM

fig. 1-d: Display de medição usando a sonda combinada fotométrica/radiométrica SICRAM fig. 1-e: Display de medição usando uma sonda CO₂ SICRAM

fig. 1-f: Display de medição usando uma sonda CO SICRAM

Pressionando SHIFT FNC, uma tela de menu aparece com as seguintes informações :

- **unit**: permite selecionar a unidade de medição para a grandeza corrente e tornar a visualização padrão
- data: permite a visualização dos valores máximos, mínimos e médios das medições
- section: permite a configurar a seção de tubulação para calculo de de taxa de fluxo
- Cal CO2: permite iniciar o procedimento de calibração da sonda de CO₂.
- Cal CO: permite iniciar o procedimento de calibração da sonda de CO e a substituição do sensor.

4.3.1 Ajustando a seção do tubo

Proceder como se segue para acessar a função section :

- Use SHIFT FNC para abrir o sub menu;
- Use as teclas de seta $\blacktriangle \nabla$ para selecionar *section*;
- Pressionar ENTER para confirmar;
- O menu de Atalho vai aparecer:

• Use as teclas de navegação ▲ ▼ para selecionar section e pressione enter. A seguinte tela vai aparecer:

Use as teclas de navegação ◄► para realçar o dígito na seção. Use as teclas de navegação
 ▲ ▼ para modificar o dígito realçado.

A área compreendida deve estar entre 0,0001 m² (1 cm²) e 1,9999 m².

PressionandoF1 o display alterna entre m2 e inch2;

- Pressionar enter para confirmar a informação e sair da sessão de ajuste.
- Pressionar **ESC** para sair do sub menu sem fazer nenhuma alteração.

4.3.2 Os valores máximo, mínimo e médio das grandezas capturadas

Proceder como se segue para acessar a função data :

- Use **SHIFT FNC** para abrir o sub menu;
- Use as teclas de setas $\blacktriangle \nabla$ para selecionar data;
- Pressionar **ENTER** para confirmar: a grandeza selecionada é mostrada na linha central do display;
- As três grandezas *max* (máximo), *min* (mínimo) e *avg* (médio) são mostradas na linha inferior do display, usando F1 ou F2.

A tecla **F3** permite escolher para limpar (*Clr*) os dados máximo, mínimo e médio dos dados de medições capturadas:

- Para limpar os dados, selecionar *Clr* com F3;
- Outro sub menu será aberto;
- Use as teclas de setas $\blacktriangle \nabla$ para selecionar *yes*;
- Pressionar ENTER para confirmar.
- Pressionar ESC ou selecionar *no*, para sair sem limpar os dados.

5. MENU PRINCIPAL

Para acessar o menu de programação pressionar **SETUP**: O menu de configuração será mostrado com os seguintes ítens:

1 1+	10:45:50
MAIN	MENU
0) Info	5) Firmware
1) Logging	6) Time/Date
2) Serial	7) Calibrate
3) Reset	8) Kev lock
4) Contr.	9) Password
<esc> exit/</esc>	cancel

- 0) Info 5) Firmware
- 1) Logging 6) Time/date
- 2) Serial 7) Calibrate
- 3) Reset 8) Key lock
- 4) Contr. 9) Password

Se você não pressionar nenhuma tecla em 2 minutos, o instrumento volta para o menu principal.

Use as teclas de setas $\blacktriangle \lor$ e pressione ENTER para selecionar um item.

Para sair do item selecionado e voltar ao menu anterior, pressionar ESC.

Para sair imediatamente do menu principal, pressionar SETUP novamente.

5.1 MENU INFO

•

Uma vez aberto o menu principal ao pressionar SETUP, pressionar $\mathbf{\nabla}$ e ENTER para acessar o menu Info,

As seguintes informações serão mostradas: o código do instrumento e o programa operacional, data e versão da firmware, número de série, data da calibração do instrumento, código de identificação do usuário.

10:45:50
Prog.A
)
5/10/12
0
0000

- Model HD32.1 Prog. A: Programa Operacional Análise de Microclima
 - Model HD32.1 Prog. B: Programa Operacional Análise de Desconforto
- Model HD32.1 Prog. C: Programa Operacional Grandezas Físicas

Para modificar o USER ID, pressione ENTER. Selecione com as setas ◀► a figura que deseja modificar, utilize as setas ▲▼ para modificar. Faça o mesmo no restante das figuras e pressione ENTER. Nota: USER ID pode ser modificado através do software.

Pressionar ESC para voltar ao menu principal. Pressionar SETUP para sair do menu.

5.2 MENU LOGGING

Uma vez aberto o menu principal ao pressionar SETUP, para acessar o menu Logging proceder como se segue:

- 1. Use as teclas de setas $\blacktriangle \nabla$ para selecionar Logging;
- 2. Pressionar ENTER:

O sub menu de configuração de parâmetros para as sessões de registro (logging) (captura de dados medidos) será mostrado.

10:45:50
LOGGING MENU
0) Log Interval
1) Self shut off mode
2) Start/stop time
3) Cancel auto start
4) I og file manager
<esc> exit/cancel</esc>
4) Log file manager <esc> exit/cancel</esc>

Você pode ajustar a freqüência de captura do dados (*Log interval*) e o início automático do registro (*Start/stop time*). O intervalo de captura é o mesmo para todas as sondas.

5.2.1 Intervalo de Registro

Use este item para ajustar o intervalo LOG (intervalo entre duas capturas de amostras subseqüentes): Para acessar este ajuste, proceder como se segue:

Uma vez que você acessou o submenu *LOGGING* (par.anterior) use as teclas de setas $\blacktriangle \nabla$ para selecionar *Log Interval*:

- 1. Use as teclas de setas ▲ ▼ para selecionar a duração do intervalo de 15 segundos a uma hora;
- 2. Pressionar ENTER para confirmar e retornar ao menu Logging;
- 3. Pressionar ESC para retornar ao menu Logging sem fazer qualquer alteração;
- 4. Pressionar ESC novamente para voltar ao menu principal;
- 5. Pressionar **SETUP** para sair imediatamente do menu.

Estes são os valores disponíveis: 15 segundos - 30 segundos - 1 minuto - 2 minutos - 5 minutos - 10 minutos - 15 minutos - 20 minutos - 30 minutos - 1 hora

Intervalo de Armazenagem	Capacidade de Armazenagem	Intervalo de Armazenagem	Capacidade de Armazenagem
15 segundos	Cerca de 11 dias e 17 horas	10 minutos	Cerca de 1 anos e 104 dias
30 segundos	Cerca de 23 dias e 11 horas	15 minutos	Cerca de 1 anos e 339 dias
1 minuto	Cerca de 46 dias e 22 horas	20 minutos	Cerca de 2 anos e 208 dias
2 minutos	Cerca de 93 dias e 21 horas	30 minutos	Cerca de 3 anos e 313 dias
5 minutos	Cerca de 234 dias e 17 horas	1 hora	Cerca de 7 anos e 261 dias
5.2.2 Modo Auto Desligamento

O item *Self shut-off mode* controla o desligamento automático do instrumento durante o registro, ocorrendo entre a captura de uma amostra e a próxima. Quando o intervalo for menor do que 60 segundos, o instrumento sempre permanecerá ligado. Com intervalos maiores ou igual a 60 segundos, é possível desligar o instrumento entre os registros: ele vai ligar no momento da amostragem e desligará imediatamente após, dessa forma aumentando a vida da bateria.

Uma vez que você acessou o sub menu *LOGGING* (par. anterior) use as teclas de setas ▲ ▼ para selecionar *Self shut_off mode*:

• Se o ajuste de *Log Interval* (veja o par. anterior) for menor do que 60 segundos, o display mostrará o que se segue

• Se o ajuste de *Log Interval* (veja o par. anterior) for maior ou igual do que 60 segundos, o display mostrará o que se segue

1. Usando as teclas de setas ▲ ▼ você pode selecionar:

STAY ON (o instrumento permanece ligado) **SHUT OFF** (o instrumento permanece desligado)

- 2. Pressionar ESC para voltar ao menu Logging;
- 3. Pressionar ESC novamente para voltar ao menu principal;
- 4. Pressionar **SETUP** para sair imediatamente do menu.

5.2.3 Tempo de Iniciar/parar-Parada automática

O início e o encerramento do registro pode ser programado com a introdução da data e hora. Quando solicitado, a função sugere a hora corrente mais 5 minutos como hora do início: Pressionar <ENTER> para confirmar ou ajustar a data e hora usando as teclas de seta. Então você pede para ajustar a data da finalização do registro: Como default (padrão do aparelho) o instrumento sugere a hora de início mais 10 minutos. Os valores sugeridos pelo default são tal que permite ao usuário configurar um instrumento pronto para medição.

OBSERVAÇÃO: Pelo default a hora ajustada é 5 minutos depois da hora corrente.

Para introduzir este ajuste, faça como se segue.

Uma vez que você acessou o sub menu *LOGGING* submenu (par.anterior) use as teclas de setas ▲ ▼ para selecionar *Start/Stop time*: A seguinte mensagem "Enter start time" (Entrar com a hora de início) será mostrada:

- 1. Use as teclas de seta ◀ ► para selecionar os dados a serem alterados (ano/mes/dia e hora:minutos:segundos);
- 2. Uma vez selecionado, os dados começam a piscar;
- 3. Use as teclas de seta $\mathbf{\nabla} \mathbf{A}$ para alterar seus valores;
- 4. Confirmar pressionando ENTER;
- 6. Pressionar *ESC* para voltar ao menu Logging sem fazer nenhuma mudança;
- 7. Pressionar ESC novamente para voltar ao menu principal;
- 8. Pressionar **SETUP** para sair imediatamente do menu.

Depois de ajustar a hora de início, a janela da hora de parar (enter stop time – entrar com a hora de parar) o registro será mostrada:

- 1. Use as teclas de seta ◀ ► para selecionar os dados a serem alterados (ano/mes/dia e hora:minutos:segundos);
- 2. Uma vez selecionado, os dados começam a piscar;
- 3. Use as teclas de seta $\mathbf{\nabla} \mathbf{A}$ para alterar seus valores;
- 4. Confirmar pressionando ENTER;
- 5. Pressionar *ESC* para voltar ao menu Logging sem fazer nenhuma mudança;
- 6. Pressionar ESC novamente para voltar ao menu principal;
- 7. Pressionar SETUP para sair imediatamente do menu.

<u>OBSERVAÇÃO</u>: Pelo default a hora final de aquisição é 10 minutos depois da hora de início da sessão de registro.

8. Uma vez que ambos os valores foram ajustados, um resumo será mostrado: Hora de início e de finalização da sessão LOG .

••	10:45:50
<enter> to confirm Start time 2006/01/29 10:50:00 End time 2006/01/29 11:00:00</enter>	
<esc> exit/cancel</esc>	

- 9. Pressionar ENTER para confirmar ou ESC para sair sem habilitar o início automático: Em ambos os casos, você vai voltar ao menu *LOGGING*.
- 10. Pressionar **SETUP** para sair imediatamente do menu principal.

Quando o instrumento inicia automaticamente uma sessão LOG, um beep é emitido a cada captura e a mensagem LOG piscando é mostrada no topo do display.

Pressionar MEM para parar a sessão antes da hora ajustada.

Para cancelar o ajuste de iniciar automático, use a função **Cancel auto start** como ilustrado no parágrafo seguinte.

<u>OBSERVAÇÃO</u>: A sessão logging é iniciada mesmo quando o instrumento estiver desligado.

Se este estiver desligado quando uma sessão de registro automático é iniciada, o instrumento é ligado poucos segundos mais tarde e permanece ligado ao final do registro. Se ele estiver funcionando com bateria, ele se desliga se ficar inativo por alguns minutos ao final da sessão de registro.

Veja parágrafo 4.2.2 para ajustar o encerramento automático.

5.2.4 Cancelar auto início

Uma vez que as horas de início e finalização da sessão LOG foram ajustadas, você pode impedir o início automático da sessão usando *Cancel auto start*.

Uma vez que você acessou o sub menu *LOGGING* :

- 1. Use as teclas de seta **▼** ▲ para selecionar *Cancel auto start*
- 2. A hora de início e fim da sessão LOG será mostrada:

	10:45:50
Self-timer abort start scheduled at 2006/01/29 10:50 stop scheduled at 2006/01/29 11:00: ARROW delete sc	:00 00 hedule

3. Pressionando ▲ a seguinte mensagem será mostrada: "Self timer not active" (O relógio automático não está ativado);

- 4. Pressionar ENTER para cancelar o início automático;
- 5. Pressionar ESC para sair sem cancelar o início automático;
- 6. Pressionar ESC novamente para sair do sub menu;
- 7. Ou pressionar **SETUP** para sair imediatamente do menu principal.

Veja o parágrafo anterior para ajustar uma nova hora de início automático depois de cancelar a anterior.

5.2.5 Gerenciador do Arquivo Log

Este permite gerenciar os registros capturados: o instrumento permite imprimir os arquivos dos dados capturados (*Print selected log*) e deletar toda a memória (*Erase ALL logs*). O instrumento pode armazenar até 64 sessões de LOG numeradas progressivamente de 00 a 63, numa disposição de 4 linhas e 4 colunas. Se houver mais de 16 sessões, pressionar F1 (**Page-**) para voltar à tela anterior e F3 (**Page+**) para ir para a próxima. A página atual (0,1,2 ou 3) e as páginas totais com os dados armazenados são mostradas no canto direito superior: no exemplo abaixo, "0/3" se refere à página 0 de 3 com dados armazenados.

PRINT A FILE	0/3
00 - 01 - 02 - 03	
04 - 05	
08 - 09	
12 - 13 - 14 - 15	
D:2006/01/27 18:50:00	
Rec: 000006	
Page- Pa	age+
F1 F2	F3
	\sim
$(\bullet) (\bullet) ($	\bullet

Uma vez acessado o sub menu *LOGGING* :

1. Use as teclas de setas ▲ ▼ para selecionar Log File manager (Gerenciar Arquivo de Registro): o seguinte submenu será mostrado

	10:45:50
LOG FILE MAN	AGER
0) Print selected 1) Erase ALL log 2) Log time inter	log ls val
<esc> exit/can</esc>	cel

0) Print selected log (Imprimir registros selecionados)

- 1) Erase ALL logs (Apagar TODOS os registros)
- 2) Log time interval (Intervalo de tempo de registro)
- 2. Use as teclas de setas \blacktriangle \triangledown para selecionar um item do menu;
- 3. Pressionar ENTER para confirmar;
- 4. Pressionar ESC para voltar ao menu;
- 5. Pressionar SETUP para sair do menu principal diretamente.

OBSERVAÇÃO: Você pode conectar um PC ou uma porta serial de impressora à porta serial RS232 do instrumento. Se você conectar uma porta de impressora paralela, você vai precisar de um conversor paralelo-serial entre o instrumento e a impressora (não fornecido com o instrumento). Antes de iniciar a impressão via Porta RS232C, ajustar a taxa baud. Para fazer isso, selecionar *Baud Rate* no menu *Serial* (veja par. 5.3.1 Taxa Baud

) e selecionar o valor máximo igual a **38400 baud**. Se você conectar uma impressora, ajuste seu valor máximo permitido.

Ao conectar o instrumento ao PC ou a uma comunicação com impressora é necessário que a taxa baud do instrumento seja a mesma do computador ou da impressora.

0) Print selected log: (imprimir registro selecionado)

Selecionando este item, a página do registro a ser impresso será mostrada:

- 1. Use as teclas de setas ▲ ▼ ◀ ► para selecionar o registro a ser impresso ;pressionar F1 e F3 para ir para outra página;
- 2. uma vez selecionado o arquivo, a data e a hora de início de aquisição e número de amostras no arquivo (Rec) são mostrados no canto inferior do display. Os arquivos são armazenados em ordem ascendente. Cada arquivo é identificado somente pela data e hora, ambos mostrados no display. No exemplo acima, o arquivo 00 é selecionado: registro iniciado em 27 de Janeiro de 2006 às 18,50 hs. O arquivo contém 6 amostras.
- 3. Pressionar ENTER para imprimir o registro selecionado (ou pressionar ESC para retornar ao menu anterior, sem imprimir);

<u>OBSERVAÇÃO:</u> Você pode imprimir um arquivo somente quando usar o mesmo programa operacional que gerou o arquivo.

- 4. A mensagem de transferência de dados será mostrada uns poucos segundos, então o instrumento voltará para a página **Print selected log** para selecionar outro registro a ser impresso;
- 5. Repetir o procedimento para imprimir as sessões requeridas ou pressionar **ESC** para sair deste menu;
- 6. Pressionar SETUP para sair imediatamente do menu principal.

1) Erase all memory (Apagar toda a memória)

Se você selecionar este item, "ERASE ALL FILES" (apagar todos os arquivos) o display mostrará:

- 1. pressionar ENTER para apagar todos os arquivos;
- 2. pressionar ESC para voltar ao menu anterior;
- 3. pressionar SET para sair do menu principal diretamente.

2) Intervalo de tempo de registro

Se refere ao tempo de registro : quando o intervalo de tempo expirar, o registro pára . Pressionar a tecla MEM para parar o registro antes do intervalo de tempo ajustado expirar.

Para desabilitar esta função, ajustar o tempo para 0. Neste caso, se você pressionar a tecla MEM ou se a memória estiver cheia, o registro vai parar.

••• •	10:45:50
Input LOG TIM as h:mm:ss (1) Use arrows to a <esc> to exit. Now set at: 00:</esc>	E INTERVAL h max) correct or 00:00
<esc> exit/ca</esc>	ncel

Use as teclas de seta para alterar o tempo ajustado, o valor máximo permitido é de 1 hora. Pressionar **ENTER** para confirmar.

Pressionar ESC para sair deste sub menu sem salvar as alterações.

Pressionar SETUP para sair diretamente deste menu.

5.3 MENU SERIAL (COMUNICAÇÃO SERIAL)

O sub menu *Serial* permite ajustar a velocidade de transferência de dados via porta serial (*Baud rate*) e o intervalo de impressão dos registros (*Print Interval*).

As sessões LOG podem ser baixadas num PC, através de conexão RS232 ou USB.

No caso de conexão serial, a velocidade de transferência pode ser ajustada pelo usuário (veja próximo par.) mas não pode ser maior do que 38400 bps.

No caso de uma conexão USB, a velocidade de transferência é fixada em 460800 bps.

Depois de baixar os dados no PC, usando um software dedicado, eles serão processados por este software para display gráfico e cálculo dos índices de conforto/stresse.

O instrumento pode ser conectado diretamente a uma impressora serial de 80 colunas.

Para acessar o sub menu *Serial*, proceder como se segue::

1. Pressionar SETUP;

2. Use as teclas de setas $\blacktriangle \nabla$ para selecionar *Serial*;

- 3. Pressionar ENTER;
- 4. Você vai obter o sub menu Serial.

	10:45:50
SERIAL COM MENU 0)Baudrate 1)Print Interval	J
<esc> exit/cance</esc>	9

5.3.1 Taxa Baud

A Baud Rate indica a velocidade usada pela comunicação serial com o PC.

Para ajustar a Baud rate, proceder como se segue:

- 1. Use as teclas de $\blacktriangle \nabla$ para selecionar o item;
- 2. Pressionar ENTER: Você obterá a seguinte mensagem:

- 3. Use as teclas de seta $\mathbf{\nabla} \mathbf{A}$ para ajustar o valor;
- 4. Pressionar **ENTER** para confirmar e retornar à página anterior, ou pressione **ESC** para cancelar a alteração e sair do item do menu;
- 5. Pressionar **ESC** mais e mais para sair dos sub menus;
- 6. Pressionar SETUP para sair imediatamente do menu principal.

AVISO: A comunicação entre o instrumento e PC (ou porta serial de impressora) somente funciona se a taxa baud do instrumento e do PC forem iguais . Se a conexão USB for usada o valor deste parâmetro será automaticamente ajustado.

OBSERVAÇÃO: Ao ajustar a taxa baud, verificar a velocidade da impressora.

5.3.2 O intervalo de impressão

Para ajustar Print Interval (intervalo de impressão), proceder como se segue:

- 1. Use as teclas de seta $\blacktriangle \nabla$ para selecionar o item;
- 2. Pressionar ENTER: Você vai obter a seguinte mensagem :

3. Use as teclas de seta $\mathbf{\nabla} \mathbf{A}$ para ajustar o valor;

4. Pressionar **ENTER** para confirmar e voltar à página anterior, ou pressionar **ESC** para cancelar a alteração e sair do item do menu;

5. Pressionar **ESC** mais e mais para sair dos sub menus;

6. Pressionar SETUP para sair imediatamente do menu principal.

O intervalo de impressão pode ser ajustado de 0 segundos a uma hora: 0 s - 15 s - 30 s - 1 min. - 2 min. - 5 min. - 10 min. - 15 min. - 20 min. - 30 min. - 1 hora.

5.4 **Restaurar**

Para entrar no sub menu *Reset* com a finalidade de realizar uma restauração completa do instrumento, proceder como se segue:

- 1. Pressionar SETUP
- 2. Use as teclas de seta ▼ ▲ para selecionar *Reset*
- 3. Pressionar ENTER: Você vai obter a seguinte mensagem

- 4. Use as teclas de seta $\mathbf{\nabla} \mathbf{A}$ para selecionar *Reset*
- 5. Pressionar ENTER para confirmar, ou pressionar ESC mais e mais para sair dos sub menus
- 6. Pressionar SETUP para sair imediatamente do menu principal.

5.5 CONTRASTE

Este item do menu permite aumentar ou diminuir o contraste no display: Para acessar o sub menu *Contrast*, proceder como se segue:

1. Pressionar **SETUP**;

- 2. Use as teclas de seta $\checkmark \blacktriangle$ para selecionar *Contr*.
- 3. Pressionar ENTER:
- 4. Você vai obter a seguinte mensagem

- 5. Use as teclas de seta ◀► para aumentar ou diminuir o contraste;
- 6. Pressionar ENTER ou ESC para voltar ao menu principal;
- 7. Pressionar SETUP para sair imediatamente do menu principal.

5.6 FIRMWARE

Este item do menu permite mudar o programa operacional do instrumento.

Para acessar o sub menu *Firmware*, proceder como se segue:

- 1. Pressionar **SETUP**;
- 2. Use as teclas de seta \blacktriangle \triangledown para selecionar *Firmware*;
- 3. Pressionar ENTER;
- 4. Você vai obter o seguinte display:

- 5. Use as teclas de seta ▲ ▼ para selecionar o programa operacional que você deseja instalar;
- 6. Pressionar ENTER para confirmar e esperar que o programa escolhido faça sua auto instalação;
- 7. Ao final o instrumento vai se restaurar e iniciar pronto para o programa escolhido.

Observação: O programa operacional deve estar presente no instrumento.

5.7 HORA/DATA

Este menu permite o ajuste da hora e data que será mostrada no topo do display..

Para acessar o sub menu *Time/date*, proceder como se segue:

- 1. Pressionar SETUP;
- 2. Use as teclas de seta $\blacktriangle \lor$ para selecionar *Time/date*
- 3. Pressionar ENTER:
- 4. Você vai obter a seguinte mensagem

- 5. Use as teclas de seta ◀ ► para selecionar os dados a serem ajustados (ano/mês/dia e hora:minutos);
- 6. Uma vez selecionados, os dados começam a piscar;
- 7. Use as teclas de seta $\bigvee \triangle$ para introduzir o valor correto;
- 8. Pressionar ENTER para confirmar e voltar ao menu principal;
- 9. Ou pressionar ESC para voltar ao menu sem fazer nenhuma alteração;
- 10. Pressionar SETUP para sair imediatamente do menu principal.

<u>OBSERVAÇÃO</u>: Com relação ao tempo, você pode ajustar horas e minutos. Os segundos são sempre ajustados para 00 (ajustar 00 segundos!!).

5.8 CALIBRAR

O menu *Calibrate(Calibrar)* está reservado para o Suporte Técnico. Ele relaciona as calibrações e a última calibração realizada:

Para acessar o sub menu *Calibrate*, proceder como se segue:

- 1. Pressionar **SETUP**;
- 2. Use as teclas de seta $\blacktriangle \nabla$ para selecionar *Calibrate*
- 3. Pressionar ENTER:
- 4. Você vai obter a seguinte mensagem:

- 5. Pressionar ENTER ou ESC para voltar ao menu principal: você não pode alterar nada: somente o Suporte Técnico pode calibrar o instrumento.
- 6. Pressionar SETUP para sair do menu principal diretamente.

OBSERVAÇÃO: Você não pode alterar a data de calibração.

5.9 TECLA DE BLOQUEIO (KEY LOCK)

Este item do menu permite LOCKING/UNLOCKING (BLOQUEAR/DESBLOQUEAR) o instrumento, quando a senha for introduzida: Veja mais detalhes no próximo capítulo.

Para acessar o sub menu *Key lock* , proceder como se segue:

- 1. Pressionar **SETUP**;
- 2. Use as teclas de setas $\blacktriangle \lor$ para selecionar *Key lock*
- 3. Pressionar ENTER:
- 4. Você obterá a seguinte mensagem: "Entre com a senha"

- 5. Use as teclas de setas $\blacktriangle \lor$ para introduzir a senha correta;
- 6. Pressionar ENTER para confirmar (ou ESC para cancelar);

Pressionando **ENTER** você retorna para o menu principal e o instrumento é bloqueado: A palavra "key" é mostrada no alto do lado esquerdo do display;

<u>AVISO!</u> Quando o instrumento estiver bloqueado por uma senha, todas as teclas são bloqueadas, exceto **MEM**, usada para iniciar a sessão LOG e **SETUP**, **ENTER** e **ESC** que permitem entrar no menu principal para desbloquear o instrumento.

Por essa razão o usuário deve ajustar todos os parâmetros necessárias, proteger o instrumento usando a função KEY LOCK e iniciar a sessão LOG, a fim de impedir qualquer acesso indesejado por pessoa não autorizada.

Para *desbloquear* o instrumento, repetir os passos acima: Entre no menu principal para desbloquear o instrumento usando *Key lock* e introduzindo a senha.

Se a senha estiver errada, aparecerá a mensagem "Wrong password" (Senha Errada).

5.10 PASSWORD (SENHA)

Este menu permite configurar a senha para proteger o instrumento de acesso não autorizado. Existem dois tipos de senhas disponíveis, **ambas consistindo de quarto caracteres**:

A senha do default consiste de quarto zeros: 0000.

- A *senha do usuário*: pode ser configurada pelo usuário para proteger o instrumento de acesso não autorizado;
- A senha de fábrica está reservada para o Suporte Técnico.

Para acessar o sub menu *Password*, proceder como se segue:

- 1. Pressionar SETUP;
- 2. Use as teclas de seta ▲ ▼ para selecionar *Password*
- 3. Pressionar ENTER:
- 4. A seguinte mensagem vai aparecer:

- 5. Use as teclas de seta $\blacktriangle \nabla$ para selecionar a senha atual
- 6. Pressionar ENTER para confirmar (ou ESC para cancelar);
- 7. A seguinte mensagem vai aparecer:

••	10:45:50
old password: xxx	x
Insert new password: 000	00
<esc> exit/canc</esc>	el

- 8. Use as teclas de seta $\blacktriangle \nabla$ para entrar com nova senha;
- 9. Pressionar ENTER para confirmar (ou ESC para cancelar) e voltar para o menu principal;
- 10. Pressionar SETUP para sair diretamente do menu principal.

<u>AVISO!</u> A *User password (Senha do Usuário)* permite a você bloquear/desbloquear o instrumento (veja parágrafo 5.9 Tecla de bloqueio (Key lock).

6. SONDAS E MEDIÇÕES

6.1 SONDAS DOS PROGRAMAS OPERACIONAIS A E B : A: Análise de Microclima

B: Análise de Desconforto

TP3207

Conector: Comprimento do cabo: Dimensões:

(**) Tempo de resposta T₉₅

Pt100 película fina Classe 1/3 DIN -40 ÷ 100 °C 4 fios mais módulo SICRAM 8-polos fêmea DIN45326 2 metros Ø=14 mm L=140 mm 15 minutos

TP3275

Sonda de termômetro Globo Ø=150 mm de acordo com ISO 7243 - ISO 7726 Tipo de Sensor: Pt100 Incerteza de Medição: Classe 1/3 DIN

Range de medição: Conexão: Conector:

Comprimento do cabo:

(**) Tempo de resposta T₉₅

Pt100 Classe 1/3 DIN -10 ÷ 100 °C 4 fios mais módulo SICRAM 8-polos fêmea DIN45326 2 metros 15 minutos

TP3276

Sonda de termômetro Globo Ø=50 mm Tipo de Sensor: Pt100

Classe 1/3 DIN -10 ÷ 100 °C

fios

SICRAM

2 metros

mais

8-polos fêmea DIN45326

módulo

4

Incerteza de Medição: Range de medição: Conexão:

Concado.

Conetor:

Comprimento do cabo:

(**) Tempo de resposta T_{95} 15 minutos

Para realizar medições simultâneas a diferentes alturas:

- No caso de uma pessoa em pé: 1.70 m, 1.10 m e 0.10 m do piso
- No caso de uma pessoa sentada: 1.10 m, 0.60 m e 0.10 m do piso

Você pode usar as seguintes sondas:

TP3227K

Sonda dupla capaz de medir:

- Temperatura a 1.70 m e 1.10 m do piso no caso de pessoa em pé;
 - Temperatura a 1.10 m e 0.60 m do piso no caso de pessoa sentada;

TP3227PC

Sonda dupla para medição de temperatura ao nível do piso e na altura do tornozelo (0.10 m).

TP3227PC

Sonda composta de 2 sondas autônomas de temperatura. Usada para medição do desconforto local, devido ao gradiente vertical de temperatura. Disponível para medição de temperatura ao nível do piso e na altura do tornozelo (0.10 m). A TP3227PC tem prioridade sobre a TP3227.1, se ambas estiverem conectadas

Tipo de Sensor:
(*) Incerteza de Medição: Range de medição: Conexão:

Conector: Comprimento do cabo: (**) Tornozelos T₉₅ Piso T₉₅ Pt100 Película Fina Classe 1/3 DIN -10 ÷ 100 °C 4 fios mais módulo SICRAM 2-entradas 8-polos fêmea DIN45326 2 metros 4 minutos 20 minutos

TP3207P

Sonda para medição de temperatura ao nível do piso, usada para medição de desconforto local devido a gradiente vertical de temperatura.

 Tipo de Sensor:
 (*) Incerteza de Medição: Range de medição: Conexão: Conector: Pt100 Película Fina Classe 1/3 DIN -10 ÷ 100 °C 4 fios mais módulo SICRAM 8-polos fêmea DIN45326 2 metros 20 minutos

Comprimento do cabo: (**) Tempo de Resposta T₉₅

TP3207TR

Sonda combinada para medição de temperatura radiante. Usada para acessar insatisfação com a porcentagem assimétrica radiante.

- Tipo de Sensor: (*) Incerteza de Medição:
 - Range de medição: Conexão: Conector: Comprimento do cabo:
- (**) Radiômetro efetivo T₉₅ NTC T₉₅

Piranômetro / NTC NTC \pm 0.15 Sensitividade espectral típica $10\mu V/(W/m^2)$ $-10 \div 100 °C$ 4 fios mais módulo SICRAM 8-polos fêmea DIN45326 2 metros 90 segundos 20 minutos

AP3203

	Sonda onidirecional de fio quente.		
	Tipo de Sensor:	NTC 10Kohm	
(*)	Incerteza de Medição:	$\pm 0.02 \text{ m/s} (0.05 \div 1 \text{ m/s})$	
		$\pm 0.1 \text{ m/s} (1 \div 5 \text{ m/s})$	
	Range de medição:	0.05÷5 m/s	
		$0 \circ C \div 80 \circ C$	
	Conexão:	7 fios mais módulo SICRAM	
	Conector:	8-polos fêmea DIN45326	
	Comprimento do cabo:	2 metros	

HP3201

Sonda de bulbo úmido ventilação natural para medição do índice WBGT Tipo de Sensor: Pt100 Incerteza de Medição: Classe A Range de medição: $4 \circ C \div 80 \circ C$ Conexão: 4 fios mais módulo SICRAM Conector: 8-polos fêmea DIN45326 Comprimento do cabo: 2 metros Braid length: 16 cm

- Capacidade do tanque: Autonomia do tanque:
- (**) Tempo de resposta T₉₅
- 15 cc
 - 96 hora com RH=50%, t=23°C 15 minutos

HP3217

Sonda combinada de umidade relativa e temperatura. Usada para medição de índices de conforto ambiental. Tipo de Sensor: - Pt100 película fina para

	ripo de Sensor.	- Ptrou pencula fina para
		temperatura
		- Sensor de capacidade para
		umidade relativa
	Incerteza de	Temperatura: 1/3 DIN
	Medição:	Umidade relativa: $\pm 2.5\%$
	Range de medição:	Temperatura: -10 °C ÷ 80 °C
		Umidade relativa: 5%RH÷98%RH
	Conexão:	7 fios mais módulo SICRAM
	Conector:	8-polos fêmea DIN45326
	Comprimento do	2 metros
	cabo:	
)	%RH T ₉₅	1 minuto
	Temperatura T ₉₅	15 minutos

HP3217DM

Sonda de dois sensores para medição da temperatura de bulbo úmido ventilação natural e da temperatura de bulbo seco. Usada para medição dos índices de conforto do ambiente.

- Tipo de Sensor: Pt100 (*) Incerteza de Medição: Classe A Range de medição: $4 \circ C \div 80 \circ C$ Conexão: 7 fios mais 2-entrada para módulo SICRAM 8-polos fêmea DIN45326 Conector: Comprimento do cabo: 2 metros Capacidade do tanque: 15 cc Autonomia do tanque: 96 horas com RH=50%, t=23°C (**) Bulbo seco T₉₅ 4 minutos Bulbo úmido T₉₅ 30 minutos
 - A TP3217DM tem prioridade no : HD3201 e TP3207, se conectada.

HD320B2

Sonda de dióxido de carbono CO2

	Principio de medição CO ₂	Tecnologia infravermelho (NDIR) com duplo gerador
(*)	Incerteza de medição :	±(50ppm+3% da medição) a 20°C, 50%UR e 1013hPa
	Faixa de medição:	0 5000ppm
	Resolução	1ppm
	Conector:	8 polos Femea DIN45326
	Comprimento do cabo:	2 metros
(**)	Tempo de resposta T ₆₃	2 minutos
	Efeito da temperatura	0.2%/°C CO ₂ (Valor tipico)
	Efeito da pressão atmosferica	Compensado com sensor de pressão atmosferica, interno ao insetrumento
	Estabilidade a longo prazo	5% da faixa/5 anos (Valor tipico)
	Calibração	Um ponto a 0ppm ou 400ppm
	Temperatura/umidade relativa de trabalho	-5+50°C, 0 95%UR nao condensante

HD320A2

Sonda de monóxido de cabono CO

(*)	Principio de medição CO Incerteza de medição:	Celula eletroquímica com dois eletrodos ±(3ppm+3% da medição)
		a 20°C, 50%UR e 1013hPa
	Faixa de medição	0.0 500.0ppm
	Resolução	0.1ppm
	Conector:	8 polos femea DIN45326
	Comprimento do cabo	2 metros
(**)	Tempo de resposta T ₆₃	1 minuto
	Vida útil do sensor	5 anos tipica em condições ambientais normais
	Estabilidade a longo prazo	5% da medição/anno (Valor tipico)
	Calibração	Um ponto a 0ppm
	Temperatura/umidade relativa de trabalho	-5+50°C, 0 95%UR não Condensante

A sonda CO HD320A2 é fixa na sonda HD320B2 através de um supote magnético código. "**HD320A2S**".

(*) A sonda é calibrada . Os dados de calibração estão armazenados no módulo SICRAM.

^(**) Tempo de resposta T₉₅ é o tempo necessário para alcançar 95% como valor final. A medição do tempo de resposta é realizada indiferentemente da velocidade do ar (ar parado)

HD3218K

Haste completa com presilha e parafuso de aperto para suporte das sondas.

Haste completa com 2 presilhas e parafusos de aperto para suporte das sondas.

LP 32 F/R

Haste para sondas fotométricas-radiométricas para medição de luz LP471...

VTRAP32K

Um tripé código VTRAP32 está disponível para as medições. Altura ajustável até 1,50 metros, completo com cabeçote que pode receber até 6 sondas de medição. O mesmo tripé pode ser usado para suporte do instrumento de medição durante a captura de dados..

Os braços montados com presilhas adequadas para as sondas de medição podem ser inseridos no cabeçote, código **HD3218K**.

O kit VTRAP32K é composto de um tripé código VTRAP32 e 4 braços código HD3218K.

Realização da medição

O tripé e as sondas necessárias são montadas onde se desejar a realização da medição. Então você precisa ajustar o instrumento e iniciar a medição. Se você tiver que realizar a medição em outro local, você precisa remover tudo para esse novo local.

Ao final da sessão de medição, ou mais tarde, os dados são transferidos a um PC para processamento e relatório.

6.1.1 Avisos, cuidados e manutenção das sondas

- Não expor a sonda à gases ou líquidos que possam corroer o material do sensor ou a própria sonda. Limpar a sonda cuidadosamente depois de cada medição.
- Não dobrar os conectores da sonda ou forçá-los para cima ou para baixo.
- Obedecer à polaridade correta das sondas.
- Não dobrar ou forçar os contatos quando inserir o conector da sonda no instrumento.
- Não dobrar, deformar ou deixar cair as sondas, pois isso poderia causar danos irreparáveis.
- Sempre selecionar a sonda mais adequada para a sua aplicação.
- Sempre selecionar a sonda mais adequada para a sua aplicação.

Algumas sondas não são isoladas de seu alojamento externo, seja muito cuidadoso para não entrar em contato com partes vivas (acima 48V). Isto poderia ser extremamente perigoso para o instrumento assim como para o operador, que poderia ser eletrocutado.

- Evite tirar medições em presença de fontes de alta freqüência, fornos de microondas ou grandes campos magnéticos, pois os resultados podem não ser confiáveis.
- O instrumento é resistente à água e IP67, mas não deve ser imerso em água. Se o instrumento cair dentro da água, checar se houve qualquer infiltração de água.

Sensor de fio quente para velocidade do vento AP3203

- O sensor de fio quente para velocidade do vento AP3203 é aquecido e, na presença de vapores de gás, poderiam provocar fogo ou explosão. Não usar a sonda em presença de gases inflamáveis. Assegure-se de que nenhum vazamento de gás potencialmente explosivo ou de vapor ocorra nos ambientes de medição.
- A sonda é delicada e deve ser manuseada com extremo cuidado. Como o sensor é protegido só parcialmente, durante o uso, uma simples pancada poderia fazer com a sonda não pudesse mais ser usada.
- Após a medição, o sensor fixado no cabeçote da sonda deve ser protegido com o cilindro rosqueado fornecido.
- Durante o uso, a sonda oni direcional AP3203 deve ser protegida com uma esfera metálica especial.
- A esfera de proteção deve ser removida após o uso, e o sensor deve ser encerrado dentro do cilindro especial de proteção.
- Não tocar os sensores com os dedos.
- Use somente água destilada para limpar a sonda.

A sonda **AP3203** é montada com uma tela esférica de proteção. Para reduzir o espaço ocupado quando não estiver em uso, a **AP3203** é fornecida com um cilindro de proteção que pode ser aparafusado no cabeçote da sonda.

Sonda de umidade relativa (RH) e de temperatura HD3217

- Não tocar os sensores com os dedos. Evite manchar os mesmos com óleo, graxa, resinas.
- A base do sensor é de alumínio e pode quebrar-se facilmente.
- Os sensores podem ser limpos da poeira e fumaça usando água destilada e uma escova muito macia (isto é de pêlo de texugo);
- Se as medições não forem consistentes, verificar se os sensores não estão sujos, corroídos, fragmentados ou quebrados.
- Para checar a consistência da medição de RH você pode usar soluções de sal saturadas padrão: HD75 (75% RH) e HD33 (33% RH).

Sonda de bulbo úmido ventilação natural HP3201 Sonda dupla para medição de temperatura de bulbo úmido ventilação natural e temperatura de bulbo seco HP3217DM

O comissionamento é realizado como se segue:

- Remover a tampa, ela não aparafusada.
- Inserir o cadarço na sonda de temperatura; o cadarço tem que ser umedecido previamente em água destilada.
- Encher o recipiente até ³/₄ com água destilada.
- Fechar o recipiente com a tampa.
- Aviso: Não virar a sonda verticalmente pois a água poderá ser derramada.
- O cadarço deverá se ressaltar cerca de 20 mm da sonda de temperatura.
- O cadarço vai se calcinar com o tempo (endurecer); ele deve ser substituído periodicamente.

Sonda TP3227K composta de 2 sondas de temperatura autônomas, sensor pt100 e sonda TP3227PC composta de 2 sondas de temperatura autônomas, sensor Pt100 sensor:

• Ajuste dos sensores a 1,70 m, 1,10 m e 0,10 m:

Aparafusar a haste telescópica código **TP3227.2** L=450mm com a sonda **TP3227.** Uma vez a haste presa com a presilha, ajustar a altura em 1,70 m para o sensor fixo. A sonda deslizante deve ser colocada a 1,10 do piso. Você deve usar a sonda combinada tornozelo/piso **TP3227PC** para realizar as medições a 0,10 m do piso.

Sondas de temperatura TP3227K composta de 2 sondas autônomas sensor Pt 100 e sonda TP3227PC composta de 2 sondas de temperatura autônomas, sensor Pt100:

• Ajuste dos sensores a 1,10 m, 0,60 m e 0,10 m:

Aparafusar a haste telescópica código **TP3227.2** L=450mm com a sonda **TP3227.** Uma vez a haste presa com a presilha, ajustar a altura em 1,10m para o sensor fixo. A sonda deslizante deve ser colocada a 0,60 m do piso. Você deve usar a sonda combinada tornozelo/piso **TP3227PC** para realizar as medições a 0,10 m do piso.

Sonda combinada para medição de temperatura radiante TP3207TR

A face da sonda marcada pelo símbolo é o lado do fluxo de ar quente. Este deve ser orientado no sentido da fonte quente (parede/parede teto/piso ou piso/teto).

6.2 SONDAS PARA O PROGRAMA OPERACIONAL C: QUANTIDADES FÍSICAS

6.2.1 Medição de Temperatura usando a sonda Pt100 completa com módulo SICRAM

O instrumento trabalha com sondas de temperatura montadas com módulo SICRAM (com um sensor de Platina Pt100 com 100 Ω resistência a 0°C). A corrente de excitação foi escolhida para minimizar os efeitos do auto aquecimento. O módulo SICRAM age como uma interface entre o sensor na sonda e o instrumento. Existe um circuito microprocessador com uma memória permanente interna que habilita o instrumento a reconhecer o tipo de sonda conectada e a ler suas informações de calibração.

Depois de ligar o instrumento automaticamente detecta as sondas montadas com módulo SICRAM:

As sondas são detectadas ao ligar, e isto não pode ser realizado quando o instrumento já estiver ligado, por isso, se uma sonda for conectada e o instrumento estiver ligado, é necessário desligar e ligar novamente.

Em todas as versões o sensor de temperatura está alojado na ponta da sonda.

O tempo de resposta para a medição da temperatura no ar é muito reduzido se o ar estiver em movimento. Se o ar estiver parado, agitar a sonda para frente e para trás. Os tempos de resposta são mais longos do que aqueles para medições líquidas.

A medição de temperatura por **imersão** é realizada inserindo-se a sonda no líquido por pelo menos 60 mm; o sensor é alojado na parte final da sonda;

Na medição de temperatura por **penetração** a ponta da sonda deve ser inserida a uma profundidade de pelo menos 60mm, o sensor está alojado na parte final da sonda. Quando da medição da temperatura em blocos congelados é conveniente usar uma ferramenta mecânica para abrir uma cavidade no bloco, na qual a ponta da sonda deve ser inserida.

Para realizar uma medição de **contato** correta, a superfície de medição deve ser lisa e polida, e a sonda deve estar perpendicular ao plano de medição. Uma medição de contato é difícil de realizar devido a vários fatores: o operador deve ser experiente em manusear a sonda e considerar todos os fatores que possam influenciar a medição.

De forma que, para obter uma medição correta, recomenda-se inserir uma gota de óleo ou pasta condutora de calor (não usar água ou solvente). Este método também melhora o tempo de resposta.

A unidade de medição °C ou °F pode ser escolhida para display, impressão e registro.

O sensor é calibrado de fábrica, e os parâmetros do Calendário Van Dusen são registrados no módulo SICRAM.

Modelo	Tipo	Range de Aplicação	Precisão
TP473P	Imersão	-100°C+400°C	±0.25°C (-100°C+350°C) ±0.4°C (+350°C+400°C)
ТР473С	Imersão	-50°C+400°C	±0.25°C (-50°C+350°C) ±0.4°C (+350°C+400°C)
TP472I	Imersão	-196°C+500°C	±0.25°C (-196°C+350°C) ±0.4°C (+350°C+500°C)
TP472I.0	Imersão	-50°C+400°C	±0.25°C (-50°C+350°C) ±0.4°C (+350°C+400°C)
TP473P.0	Penetração	-50°C+400°C	±0.25°C (-50°C+350°C) ±0.4°C (+350°C+400°C)
TP474C.0	Contato	-50°C+400°C	±0.3°C (-50°C+350°C) ±0.4°C (+350°C+400°C)
TP475A.0	Ar	-50°C+250°C	±0.3°C (-50°C+250°C)
TP472I.5	Imersão	-50°C+400°C	±0.25°C (-50°C+350°C) ±0.4°C (+350°C+400°C)
TP472I.10	Imersão	-50°C+400°C	±0.25°C (-50°C+350°C) ±0.4°C (+350°C+400°C)

6.2.2 Informações técnicas sobre sondas de temperatura Pt100 usando módulo SICRAM

Características comuns

Resolução

0.01°C no range ±199.99°C, 0.1°C no range remanescente 0.003%/°C

Desvio de temperatura @20°C

6.2.3 Medição da umidade relativa usando sonda combinada de umidade/temperatura

O instrumento trabalha usando sondas combinadas de umidade/temperatura (temperatura com sensor Pt100). As sondas combinadas umidade/temperatura são montadas com módulo SICRAM que agem cmouma interface entre o sensor na sonda e o instrumento. Existe um circuito microprocessador com uma memória permanente interna ao módulo que habilita o instrumento a reconhecer o tipo de sonda conectada e ler suas informações de calibração.

As sondas são detectadas ao ligar o instrumento, e isto não pode ser realizado quando o instrumento já estiver pronto, por isso se uma sonda for conectada e o instrumento estiver ligado, é necessário desliga-lo e ligar novamente.

Medição de umidade relativa

As sondas de umidade são sondas combinadas de umidade/temperatura: o sensor de umidade é um sensor tipo capacitivo, o sensor de temperatura é um sensor Pt100 (100Ω a 0°C).

O instrumento mede umidade relativa %RH e temperatura, e iniciando de um valor de pressão barométrica fixa de 1013,25 mbar ele calcula as seguintes grandezas resultantes:

- g/kg Gramas de vapor em a quilograma de ar seco
- g/m³ Gramas de vapor por metro cúbico de ar seco
- hPa Pressão parcial de vapor (hPa)
- J/g Entalpia
- Td Ponto de orvalho (°C ou °F)
- Tw Temperatura de bulbo úmido (°C ou °F)

Uma medição é realizada colocando-se a sonda na área dos parâmetros que você desejar medir. Mantenha a sonda longe de elementos que possam interferir com as medições, tais como: fontes de aquecimento ou de resfriamento, paredes, correntes de ar, etc. Não permita quedas de temperatura que possam causar condensação. Uma leitura tirada quando não ocorrer nenhuma queda de aquecimento, é praticamente imediata. Em contraste, em condições envolvendo quedas de aquecimento, é necessário esperar até que os sensores e seus alojamentos tenham alcançado um equilíbrio térmico para prevenir irradiação ou absorção de calor no sensor de umidade relativa, o que causaria uma falha de medição. Se a temperatura afetar a umidade relativa, mover a sonda como um ventilador para melhorar a velocidade do tempo de resposta na presença de quedas de calor.

A calibração do sensor de umidade/temperatura pelo usuário não é necessária. O sensor de umidade é calibrado em nosso laboratório a 23°C no ponto de 75%RH, 33%RH e 11,4%RH. Sob pedido, as sondas podem ser verificadas para diferentes isotermas. O sensor de temperatura é calibrado de fábrica e os parâmetros do Calendário Van Dusen são registrados no módulo SICRAM.

6.2.4 Informações técnicas sobre sondas de umidade relativa e temperatura usando módulo SICRAM

Madala	Sensor de	Range de aplicação		Precisão			
Modelo	temperatura	%RH	Temperatura	%RH	Temp.		
HP472AC	Pt100	598%RH	-20°C+80°C	±2.5% (595%RH)	± 0.3 °C		
HP473AC	Pt100	598%RH	-20°C+80°C	±3% (9599%RH)	±0.3°C		
HP474AC	Pt100	598%RH	-40°C+150°C	· · · ·	±0.3°C		
HP475AC	Pt100	598%RH	-40°C+150°C	±2.5% (595%RH)	±0.3°C		
HP475AC1	Pt100	598%RH	-40°C+180°C	±3.5% (9599%RH)	±0.35°C		
HP477DC	Pt100	598%RH	-40°C+150°C		±0.3°C		

Características comuns

Umidade relativa				
Sensor	Capacitivo			
Capacidade típica @30%RH	300pF±40pF			
Resolução	0.1%RH			
Desvio de temperatura @20°C	0.02%RH/°C			
Tempo de resposta %RH a temperatura constante	10sec (10→80%RH; velocidade d	0		
ar=2m/s)				
Temperatura				
Sensor Pt100	100 Ω @ 0°C			
Resolução	0.1°C			
Desvio de temperatura @20°C	0.003%/°C			

Observações importantes:

- 1) Não tocar o sensor de RH com as mãos.
- 2) A base do sensor é feita de alumínio de forma que pode se quebrar facilmente
- Armazenagem de soluções saturadas: as soluções saturadas devem ser estocadas em ambiente escuro a temperatura constante de cerca de 20° com o recipiente bem fechado dentro de uma sala seca.

Umidade relativa de sais saturados a diferentes temperaturas

Temp.	Cloreto de	Cloreto de	Cloreto de
°C	Lítio	Magnésio	Sódioe
0	11.23 ± 0.54	33.66 ± 0.33	75.51 ± 0.34
5	11.26 ± 0.47	33.60 ± 0.28	75.65 ± 0.27
10	11.29 ± 0.41	33.47 ± 0.24	75.67 ± 0.22
15	11.30 ± 0.35	33.30 ± 0.21	75.61 ± 0.18
20	11.31 ± 0.31	33.07 ± 0.18	75.47 ± 0.14
25	11.30 ± 0.27	32.78 ± 0.16	75.29 ± 0.12
30	11.28 ± 0.24	32.44 ± 0.14	75.09 ± 0.11
35	11.25 ± 0.22	32.05 ± 0.13	74.87 ± 0.12
40	11.21 ± 0.21	31.60 ± 0.13	74.68 ± 0.13
45	11.16 ± 0.21	31.10 ± 0.13	74.52 ± 0.16
50	11.10 ± 0.22	30.54 ± 0.14	74.43 ± 0.19
55	11.03 ± 0.23	29.93 ± 0.16	74.41 ± 0.24
60	10.95 ± 0.26	29.26 ± 0.18	74.50 ± 0.30
65	10.86 ± 0.29	28.54 ± 0.21	74.71 ± 0.37
70	10.75 ± 0.33	27.77 ± 0.25	75.06 ± 0.45
75	10.64 ± 0.38	26.94 ± 0.29	75.58 ± 0.55
80	10.51 ± 0.44	26.05 ± 0.34	76.29 ± 0.65
85	10.38 ± 0.51	25.11 ± 0.39	
90	10.23 ± 0.59	24.12 ± 0.46	
95	10.07 ± 0.67	23.07 ± 0.52	
100	9.90 ± 0.77	21.97 ± 0.60	

6.2.5 Medição da velocidade do vento

O instrumento trabalha com sondas de fio quente e sonda ventoinha montadas com módulo SICRAM.

O módulo SICRAM age como uma interface entre o sensor na sonda e o instrumento. Existe um circuito microprocessador com uma memória interna permanente que habilita o instrumento a reconhecer o tipo de sonda e a ler suas informações de calibração.

Observação: As sondas ventoinha podem ser conectadas exclusivamente na entrada 8.

A sonda é detectada ao ligar o instrumento, e isso não pode ser realizado quando o instrumento já estiver ligado, por isso se a sonda for conectada e o instrumento estiver ligado, é necessário desligar o mesmo e liga-lo novamente.

As sondas series AP471 e AP472 medem a velocidade incidente e a taxa de fluxo do vento; algumas também medem a temperatura do ar. A medição pelo princípio do fio quente é usada para as series AP471 e o princípio ventoinha para a série AP472. Sob pedido, as sondas da série AP471 podem ser montadas com uma haste telescópica que facilita as medições em áreas de difícil acesso (por exemplo, respiradouros).

As aplicações típicas são verificar a velocidade do vento e a taxa de fluxo em sistemas de ar condicionado, sistemas de aquecimento e resfriamento, ou determinação do conforto ambiental, etc.

As sondas de fio quente usualmente são empregadas para medições precisas com velocidades do vento de média a baixa (até 10m/s), as sondas ventoinha com velocidades de 5 a 50m/s.

Em adição, a temperatura medida do fluido deve ser considerada: as sondas de fio quente medem fluxos de ar a temperatura máxima de 80°C, as sondas ventoinha fluxo de ar até 120°C, dependendo do modelo.

As medições fornecidas pelo instrumento usando as sondas são: velocidade do vento, taxa de fluxo e temperatura do ar.

As seguintes unidades de medição estão disponíveis:

- Para velocidade do vento: m/s km/h ft/min mph (milhass/hora) knots;
- Para temperatura do ar: °C e °F;
- Para taxa de fluxo: l/s (litros/s) m^3/s m^3/min m^3/h ft^3/s ft^3/min

A medição de taxa de fluxo requer conhecimento da área ortogonal do duto ou respiro para o fluxo: o item de menu "SECT" define a área da seção m^2 ou **inch**². Para ajustar essa seção, você tem que abrir o menu Shortcut, pressionando SHIFT FNC. O menu Shortcut aparecerá:

Use as teclas de navegação $\blacktriangle \nabla$ para selecionar seleção e pressione Enter. A seguinte tela aparecerá:

Use as teclas de navegação $\blacktriangleleft \triangleright$ para realçar os dígitos na seção. Use as teclas de navegação $\blacktriangle \blacktriangledown$ para modificar o dígito realçado.

A área compreendida deve estar entre 0,0001 m² (1 cm²) e 1,9999 m².

Pressionando F1 alterna-se o display entre m2 e pol2;

Pressionar Enter para confirmar a informação e sair do ajuste de seção.
6.2.6 AP471S... Sondas de fio quente para medição da velocidade do vento completas com módulo SICRAM

As sondas AP471 S1 e AP471 S3 medem o fluxo de ar incidente até 40m/s. As sondas AP471 S2, AP471 S4 e AP471 S5 são montadas com um sensor oni directional que permite a medição de velocidades até 5m/s em qualquer direção de fluxo de ar incidente na sonda. A sonda AP471 S4 é montada com base de suporte e proteção do sensor, a AP471 S5 é idêntica AP471 S4, mas no lugar da base é fornecida com uma haste telescópica. A medição da velocidade do vento é compensada de acordo com a temperatura dentro do range de 0°C...+80°C.

As sondas AP471 S1, AP471 S2 e AP471 S3 medem a temperatura ambiente no range de -30°C...+110°C; as sondas AP471 S4 e AP471 S5 no range de 0°C...+80°C.

Os módulos AP472 S... são calibrados na fábrica; nenhuma calibração é requerida ao usuário.

As sondas AP471 S1, S2 e S3 são montadas com uma tela de proteção cilíndrica que pode deslizar longitudinalmente sobre uma ranhura. A tela tem duas posições de parada para bloqueiala em condição de medição (totalmente baixo) ou demais condições (completamente alto). Para reduzir o espaço ocupado quando não em uso, a AP471 S4 e AP471 S5 são fornecidas com cilindro de proteção que pode ser aparafusado no cabeçote da sonda.

Operação

Estender a haste telescópica até o comprimento necessário **prestar atenção para que o cabo possa deslizar livremente e sem esforço**.

Destampar o sensor e introduzir a sonda no fluxo de ar a ser medido, mantendo a seta no topo da sonda paralela ao fluxo, como indicado na figura.

A sonda deve ser mantida ortogonal ao fluxo e não inclinar em relação a ele:

Prosseguir com a medição seguindo as instruções fornecidas neste capítulo.

6.2.7 Informações técnicas sobre sondas de fio quente para medição da velocidade do vento e temperatura usando módulo SICRAM

	AP471 S1 - AP471 S3	AP471 S2	AP471 S4 AP471 S5			
Tipo de medições	Velocidade do vento, taxa de flu	uxo calculada, ten	nperatura do ar			
Tipo de sensor						
Velocidade	Termistor NTC	Termistor Oni di	irecional NTC			
Temperatura	Termistor NTC	Termistor NTC				
Range de medição						
Velocidade	0.0540m/s	0.05	.5m/s			
Temperatura	-30+110°C	-30+110°C	080°C			
Resolução da medição:						
Velocidade	0.01 m/s 0.1 km/h 1 ft/min 0.1 mph 0.1 knot					
Temperatura	0.1	°C				
Precisão da medição Velocidade	±0.1 m/s (00.99 m/s) ±0.25 m/s (1.009.99 m/s) ±0.6 m/s (10.0040.0 m/s)	$\pm 0.08 \text{m/s}$ (0 $\pm 0.2 \text{m/s}$ (1.00	0.99 m/s))5.00 m/s)			
Temperatura	±0.4°C (-30+110°C)	±0.4°C (-30.	+110°C)			
Velocidade mínima	0.05	5 m/s				
Compensação da temperatura do ar	080°C					

AP471 S1 - AP471 S2 - AP471 S3 - AP471 S4 - AP471 S5

Cuidado e manutenção das sondas

O sensor de velocidade das sondas AP471 S... é aquecido e, em presença de vapores de gás, pode provocar fogo ou explosão. Não usar a sonda em presença de gases inflamáveis. Assegure-se de que nenhum vazamento de gás ou vapor explosivo apareça nos ambientes de medição.

A sonda é muito delicada e deve ser manuseada com extremo cuidado. Mesmo uma simples batida, especialmente das sondas oni direcional que têm um sensor descoberto, podem tornar a sonda imprópria para uso. Depois da medição, o sensor ajustado no cabeçote da sonda deve ser protegido com a tela metálica ou o cilindro rosqueado fornecidos. Durante o uso, as sondas onidirecional AP471 S4 e AP471 S5 devem ser protegidas com uma grade de metal especial. Durante o transporte, o sensor deve estar fechado dentro do cilindro rosqueado na ponta da sonda.

Não tocar os sensores com os dedos. Usar somente água destilada para limpar a sonda.

Dimensões

AP471 S5

6.2.8 AP472S... Sondas ventoinha para medição da velocidade do vento completas com módulo SICRAM

As sondas ventoinha AP472 S1, S2 e S4 medem a velocidade incidente do vento e a taxa de fluxo. As sondas AP472 S1, AP472 S4LT e AP472 S4HT também medem a temperatura usando um termopar tipo K. Sob pedido, elas podem ser montadas com uma haste telescópica que facilita as medições em áreas de difícil acesso(por exemplo, respiradouros). O range de medições das sondas de velocidade e temperatura está delineado na tabela abaixo:

	Velocidade (m/s)	Temperatura (°C)	Sensor de Temperatura	Diâmetro (mm)
AP472 S1	0.625	-25+80	Termopar K	100
AP472 S2	0.320	-25+80 (temperatura de funcionamento)		60
AP472 S4L	0.820	-25+80 (temperatura de funcionamento)		16
AP472 S4LT (on request)	0.820	-30+120 (*)	Termopar K	16
AP472 S4H	1050	-25+80 (temperatura de funcionamento)		16
AP472 S4HT (on request)	1050	-30+120 (*)	Termopar K	16

(*) o limite de temperatura se refere ao cabeçote da sonda, onde os sensores ventoinha e de temperatura estão localizados, e não ao manípulo, cabo e haste telescópica, que podem estar sujeitos à temperaturas máximas de 80°C.

Diâmetros maiores são adequados para medições de fluxo na presença de turbulência com velocidades do ar média-baixa (isto é na saída dos dutos). Diâmetros mais baixos são adequados para aplicações onde a superfície da sonda deve ser muito mais reduzida do que a seção transversal do duto dentro do qual a medição será realizada, isto é, dutos de ventilação.

Calibrações

A sondas AP472 S1, S2 e S4 são calibradas de fábrica; nenhuma calibração é requerida para o usuário.

Operação

Quando presente, a haste telescópica se estende até o comprimento necessário prestando atenção para que o cabo possa correr livremente e sem esforço.

Introduzir a sonda no fluxo de ar a ser medido, mantendo a seta no topo da sonda paralela ao fluxo como indicado na figura a seguir.

A sonda deve ser mantida ortogonal ao fluxo e não inclinar em relação a ele.

A sonda está corretamente posicionada em relação ao fluxo de ar quando o valor medido é o máximo possível.

Prossiga com as medições seguindo as instruções fornecidas neste capítulo.

Cuidado e manutenção das sondas

O desempenho da sonda, principalmente em baixa velocidade, depende largamente de muita pouca fricção da ventoinha no seu próprio eixo. Para não comprometer esta característica, recomenda-se evitar forçar, assim como bloquear ou girar a ventoinha com os dedos, e se possível, evitar inserir a ventoinha no fluxo de ar, o que poderia sujar a sonda.

Dimensões

AP472 S2

AP472 S4

Desparafusar o manípulo (3) que segura o corpo da sonda parado no ponto (1).

As sondas AP472 S1 - AP472 S2, em adição à haste telescópica com cabeça articulada pode usar uma haste telescópica rígida de \emptyset 16 mm. Desparafusar o manípulo (3) que segura o corpo da sonda parado no ponto (1). Aparafusar a ponta da haste AP471S1.23.6 (5) no parafuso (2). Você pode adicionar mais hastes telescópicas 471S1.23.6. O ultimo elemento pode ser o manipulo (3) ou a haste telescópica AP471S1.23.7 (6).

A sonda AP472 S4 pode ser usada com hastes telescópicas rígidas AP471S1.23.6.

6.2.9 Informações técnicas sobre as sondas ventoinha de medição da velocidade do vento usando módulo SICRAM

	AP472 S1	AP472 S2	AP472 S4			
			L	LT	Н	НТ
Tipo de Medições	Velocidade do ar, fluxo calculado, temperatura do ar	Velocidade do ar, Fluxo calculado	Velocidade do ar, Fluxo calculado	Velocidade do ar, Fluxo calculado, Temperatura do ar	Velocidade do ar, Fluxo calculado	Velocidade do ar, Fluxo calculado, Temperatura do ar
Diâmetro	100 mm	60 mm		16 n	nm	
<i>Tipo de medição</i> Velocidade Temperatura	Ventoinha Tc K	Ventoinha		Vento Tc K	inha 	Tc K
Range de medição				•		L
Velocidade(m/s)	0.625	0.320	0.8	.20	0.6	.25
Temperatura	-25+80	-25+80 (*)	-25+80 (*)	-25+80	-25+80 (*)	-25+80 (*)
Resolução					·	· · · ·
Velocidade	0.	01 m/s - 0.1 km/h - 1 f	t/min - 0.1 m	iph - 0.1 ki	nots	
Temperatura	0.1°C			0.1°C		
Precisão						
Velocitdade	$\pm (0.2 \text{ m/s} + 1.5\% \text{f.s.})$	$\pm (0.2 \text{m/s} + 1.5\% \text{f.s.})$		±(0.3 m/s +	-1.5%f.s.)	
Temperatura	±0.5°C			±0.5°C		
Velocidade Min	0.6m/s	0.3m/s	0.8n	n/s	0.6n	n/s

(*) O valor indicado refere-se a faixa de trabalho da ventoinha.

(**) A temperatura limite refere-se a cabeça do sensor, onde localiza-se a ventoinha e o sensor de temperatura, e não ao pegador, o cabo em toda sua extenção deve ser submetido no maximo a 80 °C.

6.2.10 Medição da Luz

O instrumento trabalha com sondas da série LP471...: Existem sondas fotométrica e radiométrica que medem **iluminação** (LP471 PHOT), **radiação** (LP471 RAD, LP471 UVA, LP471 UVB e LP471 UVC), **PAR** (LP471 PAR), **luminância** (LP471 LUM 2), e radiação efetiva de acordo com curva de ação UV (LP471 ERY). Todas as sondas, salvo a LUM 2, são fornecidas com um difusor para correção de cosseno.

Após ligar o instrumento automaticamente detecta a sonda conectada na entrada: é suficiente conecta-la. Se o instrumento já esiver ligado, desligar e ligar novamente para que a sonda seja detectada. A unidade de medição é determinada de acordo com a sonda conectada à entrada: em casos onde mais de uma unidade de medição é fornecida para a mesma sonda, usar a tecla UNIT para selecionar aquela desejada.

Todas as sondas são calibradas na fábrica; nenhuma calibração é requerida do usuário.

A sonda é detectada ao ligar o instrumento, e isto não pode ser realizado quando o instrumento já estiver ligado, por isso se uma sonda estiver conectada e o instrumento estiver ligado, é necessário desligar e ligar novamente.

6.2.11 Características técnicas das sondas fotométrica e radiométrica completas com módulo SICRAM a serem conectadas on line com o instrumento

Sonda de medição de Iluminância LP 471 PHOT completa com módulo SICRAM e montada com o instrumento

Range de medição (lux):	0.01199.99	1999.9	19999	$199.99 \cdot 10^3$
Resolução (lux):	0.01	0.1	1	$0.01 \cdot 10^3$
Range espectral:	De acordo com c	urva fotópica	padrão V(λ)	
Classe	С			
Incerteza de calibração	<4%			
f'1 (de acordo com resposta fotônica V(λ)):	<8%			
f_2 (response according to the cosine law):	<3%			
f ₃ (linearidade):	<1%			
f_4 (erro de leitura do instrumento):	<0.5%			
f_5 (fatiga):	<0.5%			
f_6 (T) (α coeficiente de temperatura)	<0.05%/K			
Desvio depois de 1 ano:	<1%			
Temperatura de trabalho:	050°C			
Padrão de referência	CIE No. 69			

Sonda de medição de LUMINÃNCIA LP 471 LUM 2 completa com módulo SICRAM e montada com o instrumento

 $\dots 1999.9 \cdot 10^3$

 $0.1 \cdot 10^3$

Range de medição (cd/m^2) :	0.11999.9	19999	$199.99 \cdot 10^3$
Resolução (cd/m ²):	0.1	1	$0.01 \cdot 10^3$
Ângulo ótico:	2°		
Range espectral:	De acordo com	n curva fotópi	ica padrão V(λ)
Classe:	С		
Incerteza de calibração:	<5%		
f'1 (de acordo com resposta fotônica V(λ)):	<8%		
f ₃ (linearidade):	<1%		
f_4 (erro de leitura do instrumento):	<0.5%		
f ₅ (fatigue):	<0.5%		
f_6 (T) (α coeficiente de temperatura)	<0.05% K		
Desvio depois de 1 ano:	<1%		
Temperatura de trabalho:	050°C		
Padrão de referência	CIE No. 69		

Curva de resposta típica

Sonda radiométrica quântica LP 471 PAR para a medição de fluxo de fótons através de um range PAR de clorofila completa com modulo SICRAM e montada com o instrumento.

0.01 199.99	200.01999.9	200010000
0.01	0.1	1
400nm700nm		
<5%		
o): <6%		
<1%		
±1digit		
<0.5%		
<1%		
050°C		
	0.01 199.99 0.01 400nm700nm <5% o): <6% <1% ±1digit <0.5% <1% 050°C	0.01 199.99 200.01999.9 0.01 0.1 400nm700nm <5% o): <6% <1% ±1digit <0.5% <1% 050°C

Curva de resposta mormalizada

Sonda de medição de RADIAÇÃO LP 471 RAD completa com módulo SICRAM e montada com o instrumento

Range de medição (W/m ²):	0.1·10 ⁻³ 999.9	$\cdot 10^{-3}$ 1	.00019.999	20.00	.199.99	200.0	1999.9
Resolução (W/m ²):	$0.1 \cdot 10^{-3}$	0	0.001	0.01		0.1	
Range espectral:	40	00nm1	050nm				
Incerteza de calibração:	<	5%					
f2 (resposta de acordo com alei	do cosseno): <	6%					
f ₃ (linearidade):	<	1%					
f4 (erro de leitura do instrument	to): ±	1 digit					
f ₅ (fatiga):	<	0.5%					
Desvio depois de 1 ano:	<	1%					
Temperatura de trabalho:	0.	50°C					

Sonda LP 471 UVA para medição	de RADIAÇÃO LP	' 471 UVA	completa cm	módulo	SICRAM	e
montada com o instrumento						

Range de medição (W/m ²):	$0.1 \cdot 10^{-3} \dots 99$	$9.9 \cdot 10^{-3}$	1.00019.999	20.00199.99	200.01999.9
Resolução (W/m ²):	$0.1 \cdot 10^{-3}$		0.001	0.01	0.1
Range espectral:		315nm	.400nm (Pico 360	nm)	
Incerteza de calibração:		<5%			
f_2 (resposta de acordo com alei do cosseno):		<6%			
f ₃ (linearidade):		<1%			
f4 (erro de leitura do instrumen	ito):	±1digit			
f ₅ (fatiga):		<0.5%			
Desvio depois de 1 ano:		<2%			
Temperatura de trabalho:		050°C			

Sonda LP 471 UVB para medição de RADIAÇÃO completa com módulo SICRAM e montada com o instrumento

Range de medição (W/m ²):	$0.1 \cdot 10^{-3} \dots 99$	9.9·10 ⁻³	1.00019.999	20.00199.99	200.01999.9
Resolução (W/m ²):	$0.1 \cdot 10^{-3}$		0.001	0.01	0.1
Range espectral:		280nm	.315nm (Peak 305	5nm)	
Incerteza de calibração:		<5%			
f_2 (resposta de acordo com alei do cosseno):		<6%			
f ₃ (linearidade):		<2%			
f4 (erro de leitura do instrumer	nto):	±1digit			
f_5 (fatiga):		<0.5%			
Desvio depois de 1 ano:		<2%			
Temperatura de trabalho:		050°C	l ,		

Curva de resposta típica

Sonda LP 471 UVC para medição de RADIAÇÃO LP 471 UVC completa com módulo SICRAM e montada com o instrumento

Range de medição (W/m ²):	$0.1 \cdot 10^{-3} \dots$	999.9·10 ⁻³	1.00019.999	20.00199.99	200.01999.9
Resolução (W/m ²):	0.1.10-3		0.001	0.01	0.1
Range espectral:		220nm2	80nm (Pico 260n	m)	
Incerteza de calibração:		<5%			
f_2 (resposta de acordo com alei do cosseno):		<6%			
f ₃ (linearidade):		<1%			
f4 (erro de leitura do instrumento	o):	±1digit			
f ₅ (fatiga):		<0.5%			
Desvio depois de 1 ano:		<2%			
Temperatura de trabalho:		050°C			

Sonda de medição LP 471ERY RADIAÇÃO TOTAL EFETIVA (W_{eff}/m^2) ponderada de acordo com curva de ação UV (CEI EN 60335-2-27) completa com módulo SICRAM e montada com o instrumento

Range de medição (W_{eff}/m^2) :	$0.1 \cdot 10^{-3}$	999.9·10 ⁻³	1.00019.999	20.00199.99	200.01999.9	
Resolução (W_{eff}/m^2):	$0.1 \cdot 10^{-1}$	3	0.001	0.01	0.1	
Range espectral:	Range	espectral:				
Incerteza de calibração:	alibração:					
f2 (resposta de acordo com alei do co	no): f_2 (resposta de acordo com alei do cosseno):					
f_3 (linearidade):		f_3 (linearidade):				
f_4 (erro de leitura do instrumento):		f_4 (erro de leitura do instrumento):				
f_5 (fatiga):		f_5 (fatiga):				
Desvio depois de 1 ano:	Desvio depois de 1 ano:					
Temperatura de trabalho:		Temperatura de trabalho:				

Curva de resposta Típica

A sonda LP 471 ERY mede a radiação total efetiva (W/m_{eff}^2) ponderada de acordo com a curva de ação UV (CEI EN 60335-2-27). Um tipo particular de fotodiodo e uma combinação de filtros especiais trazem a resposta espectral para perto da curva de ação UV.

A norma CEI EN 60335-2-27 estabelece, durante o primeiro tratamento de curtimento uma dose de $100J/m^2$ que não pode ser excedida e uma dose anual máxima de $15000J/m^2$ que não deve ser excedida.

A curva de resposta típica da LP 471 ERY é mostrada na Figura junto com a curva de ação UV: a concordância entre as duas curvas significa que medições confiáveis são obtidas usando tipos diferentes de lâmpadas (e filtros) usados pelas máquinas de curtimento encontradas atualmente no mercado.

Todas as sondas são calibradas individualmente no laboratório foto-radiométrico da DeltaOhm, usando um monocrômato de feixe duplo. A calibração é realizada a 295 nm, usando um fotodiodo SIT como referência de calibração.

6.2.12 Sonda HD320A2 para medição de concentração de monoxido de carbono CO

A sonda HD320A2 mede a concentração de monóxido de carbono no ar.

Trata-se de um gás incolor, inodoro e mais leve que o ar, também pode causar explosões e incêndio. Causa envenenamento em pequenas quantidades, um concentração de apenas 10-30ppm é suficiente para apresentar sintomas de envenenamento e uma quantidade de 2000ppm pode ser fatal em menos de 30 minutos.

Monóxido de carbomo é formado quando substancias que contém carono são queimadas na ausência de oxigênio, ou quando, a quantidade de oxigênio é suficiente, a combustão acontece em altas temperaturas, ex.: em motores de carros

O monóxido de carbono é um dos maiores agentes poluentesI em áreas urbanas. Além disso, por ser inodoro é um veneno insidioso.

Acoplada a uma sonda HD320B2, a sonda HD320A2 permite analisar e monitorar a qualidade do ar em ambientes internos e detectar alguma perda de CO.

A sensor para medição de CO é constituído por uma célula eletroquímica e dois eletrodos

Calibração da sonda de CO

A sonda é calibrada em fabrica e normalmente não querer intervenção do usuário.

No entanto, existe a possibilidade de fazer novas calibrações e corrigir o ZERO do sensor

- Em ar limpo (a consentração de CO em ambiente externo é menor que 0.1ppm
- Com o auxilio de um cilindro de nitrogenio(cod. MINICAN.12A).

Calibração de zero CO em área limpa

- 1. Coloque o instrumento em um ambiente de ar limpo (área exertna, longe de fabricas e estradas, a concentração de CO é menor que 0.1ppm), ligue o instrumento e aguarde 15 minutos até que o instruemento estabilize
- 2. Pressione a tecla SHIFT FNC: aparecerá uma janela com as flechas ▲ ▼, selecione "cal CO" e confirme com ENTER.

3. Aparecerá a tela de operação (calibração ou substituição):

4. Com as setas "Para Cima" e "Para Baixo", selecione "Cal zero" e confirme com ENTER. A tela para calibração de CO aparecerá.

5. Pressione F2= START para iniciar a calibração:

Após a escrita "CAL ZERO" è indicado o valor da concentração de CO medido pelo instrumento

Durante a calibração, a mensagem *"Zero CO in progress"* aparecerá. Aguarde por alguns minutos para iniciar o procedimento sem modificar a condição de trabalho.

Ao término o instrumento emite um sinal acústico e a mensagem " "Calibration completed" aparecerá.

Precione F2=Exit para voltar a modo de medição.

6. O procedimento esta compelto.

Calibração zero CO com cilindro de nitrogênio (cod. MINICAN.12A):

- 1. Ligue o instrumento e aguarde 15 minutos para estabilização da medição.
- 2. Conecte o tubo proveniente do cilindro de nitrogenio MINICAN.12A com uma borracha de vedação na cabeça do sensor de CO.
- 3. Pressione a tecla SHIFT FNC: aparecerá uma janela com as flechas ▲ ▼, selecione "cal CO" e confirme com ENTER.

4. Aparecerá a tela de operação (calibração ou substituição):

- 5. Com as setas "Para Cima" e "Para Baixo", selecione "Cal zero" e confirme com ENTER. A tela para calibração de CO aparecerá.
- 6. Alimente o gás ajustando o fluximento do cilindro de forma a ter um fluxo constante entre 0.1 e 0.2 l/min.
- 7. Pressione F2= START para iniciar a calibração:

Após a escrita "CAL ZERO" è indicado o valor da concentração de CO medido pelo instrumento

- 8. Durante a calibração, a mensagem *"Zero CO in progress"* aparecerá. Aguarde por alguns minutos para iniciar o procedimento sem modificar a condição de trabalho
- 9. Ao término o instrumento emite um sinal acústico e a mensagem " "Calibration completed" aparecerá". Feche o cilindro e desconect do sensor da borracha de vedação.
- 10. Pressione F2=Exit para voltar ao modo de medição.
- 11. Insira a proteção.
- 12. o procedimeto esta completo.

Substituição do sensor de CO:

Em condições normais de uso, um sensor de CO tem vida útil de 5 anos. Caso haja necessidade de troca do sensor, compre um sensor novo modelo (ECO-SURE_2E CO) e siga os passos abaixo

- 1. Disconecte o sensor do instrumento.
- 2. Desrosqueie a cabeça da sonda e retire o sensor danificado de CO
- 3. Anote o numero estampado no novo sensor, este indica a sensibilidade em nA/ppm
- 4. Insira os contatos do novo sensor
- 5. Coloque novamente o filtro protetor do sensor
- 6. Conecte o sensor e ligue o instrumento. Pressione SHIFT FNC: uma janela aparecerá. Com as setas ▲ ▼ selecione "cal CO" e confirme com ENTER.

7. Aparecerá a tela de operação (calibração ou substituição):

8. Com as setas "Para Cima" e "Para Baixo", selecione "Set sensitivity" e confirme com ENTER. A tela para troca do sensor de CO aparecerá.

- 9. Com as setas "Para Cima" e "Para Baixo inserir o valore da sensibilidade do sensor. Pressione ENTER para confirmar: o instrumento retorna a tela anterior
- 10. Se necessário calibre o ponto ZERO do novo sensor de CO.
- 11. Pressione ESC para retornar a medição.
- 12. O procedimento esta completo.

6.2.13 Sonda HD320B2 para medição da concentração de dioxido de carbono CO₂

A sonda HD320B2 mede a concentração de dióxido de carbono no ar. É indicada para medir e monitorar a quaidade do ar em ambientes internos

Indicado para medições da qualidade do ar em todas as construções onde á grande concentração de pessoas (escolas, hospitais, auditórios, cantinas, etc) em embientes de trabalho para otimização de conforto

A medição de CO_2 é obtida atravez de um sensor especial infravermelho (tecnologia NDIR: Non-Dispersive Infrared Technology) o que, graças a um duplo filtro euma tecnica particular de medição, garante precisão, estabilidade a longo prazo nas mediçoes. A analise do ar é realizada dentro de uma camara de medição através de uma menbrana de proteção localizada no topo da sonda

Calibração da sonda de CO₂

A sonda é calibrada na fabrica e usualmente não requer nenhuma intervenção do usuario

No entanto, existe a possibilidade de executar uma nova calibração o que corrige algum desvio do sensor

- a 400ppm em ar limpo
- a 0ppm com auxilio de um cilindro de nitrogenio (cod. MINICAN.12A).

O instrumento pode reconhecer automaticamente o modo de calibração : se a 400ppm ou a 0ppm. A calibração é feita em um único ponto: onde a cada novo ponto é cancelado o anterior.

A concentração de dióxido de carbono no ar pode ser influenciado por vários fatores : atividades humanas(industrias, poluição, combustão, etc) causa o aumento de seu percentual no ar. O valor de calibração é igual a 400ppm em ar limpo. Por exemplo em lugares longe de áreas muito populosas, industrias....

Faça como segue:

- 1. Se você quiser calibrar em torno de 400ppm, esteja certo em aplicar ar limpo no instrumento através da membrana localizada na cabeça da sonda
- 2. Para a calibração em 0ppm, remova a proteção localizida na base do sensor de forma a descobrir o plug de entrada do gás e conecte o tubo procedente do cilindro de nitrogênio, ajuste o fluximetro do cilindro para um fluxo de 0.3 a 0.51/min.
- 3. Ligue o instrumento e aguarde 15 minutos antes de proceguir.
- 4. Pressione a tecla SHIFT FNC: aparecerá uma tela de atalho. Com as flechas ▲ ▼ selecione "cal CO2" e confirme com ENTER

- 5. Alimente com CO₂ por 2 minutos até estabilizar a medição.
- 6. Continuando a fornecer CO_2 na sonda, pressione a função F2 = CAL CO2: a calibração que dura 3 minutos, inicia. Nesta fase o instrumento mede o CO_2 e se auto calibra a um valor

próximo a 0ppmCali se você estiver usando um cilindro de nitrogênio ou a 400ppm se você estiver calibrando com ar limpo.

- 7. Aguarde os 3 minutos necessários para a clibração sem modificar as condições de trabalho
- 8. Quando o temporizador alcança o zero, o instrumento imite um sinal acústico que confirma que a claibração esta concluída
- 9. Nota: O instrumento rejeita valores de calibração que exedam ±150ppm do valor teórico.

7. INTERFACE SERIAL E USB

7.1 O PROGRAMA OPERACIONAL A: ANÁLISE DE MICROCLIMA

O HD32.1 é montado com uma interface serial eletricamente isolada RS-232C, e uma interface USB 2.0. Opcionalmente, elas podem ser conectadas usando um cabo serial com conectores sub D 9-polos fêmeas (código 9CPRS232) e um cabo com conectores USB 2.0 (código CP22).

A conexão USB requer a instalação prévia de um driver no software do instrumento. Instalar o driver antes de conectar o cabo USB ao PC (favor verificar os detalhes no capítulo 8.2 Conexão à porta USB 2.0).

Parâmetros padrão da transmissão serial RS232 do instrumento são:

• Taxa Baud 38400 baud

1

- Paridade None
- N. bit 8
- Bit de Parada
- Protocolo Xon/Xoff

É possível mudar a taxa baud da porta serial RS232C ajustando o parâmetro "*Selection of the serial transmission speed (Baud Rate)*"(Seleção da velocidade de transmissão serial (Taxa Baud)) no menu (favor verificar o menu no capítulo **5.3.1** *A Taxa Baud*). Os valores possíveis são: 38400, 19200, 9600, 4800, 2400, 1200. Os outros parâmetros de transmissão são fixos. A conexão USB 2.0 não requer ajuste de parâmetros.

A conexao USB 2.0 nao requer ajuste de parametros.

A seleção da porta é feita diretamente pelo instrumento: se a porta USB for conectada ao PC, a porta serial RS232 é automaticamente desabilitada, e vice versa.

Os instrumentos são fornecidos com um jogo completo de questões de comandos e dados a serem enviados através do PC.

Todos os comandos transferidos para o instrumento devem ter a seguinte estrutura: XXCR onde: XX é o código do comando e CR é o Retorno de Transporte (ASCII 0D)

Os caracteres do comando XX são exclusivamente superiores aos caracteres do alojamento. Uma vez introduzido um comando correto, o instrumento responde com "&"; quando uma combinação errada de caracteres for introduzida, o instrumento responde, com "?". As cadeias de respostas do instrumento terminam com o envio do comando CR (Retorno do Transporte) e LF (Alimentação da Linha).

Antes de enviar os comandos para o instrumento via porta serial, recomenda-se travar o teclado para evitar conflitos de funcionamento.: use o comando P0. Quando completo, restaure o teclado com o comando P1.

Comando	Resposta	Descrição
P0	<u>&</u>	Detonação (trava o teclado do instrumento por 70 segundos)
P1	&	Destrava o teclado do instrumento
S0		
G0	Model HD32.1 prog.A	Modelo do instrumento
G1	M=THERMAL MICROCLIMATE	Descrição do modelo
G2	SN=12345678	Número de série do instrumento
G3	FIRM.VER.=01.00	Versão firmware
G4	Firm.Date=2005/10/12	Data da firmware
G5	cal 0000/00/00 00:00:00	Data e hora da calibração

Comando	Resposta	Descrição
C1		Sonda tipo1, número de série, data da calibração
C2		Sonda tipo2, número de série, data da calibração
C3		Sonda tipo3, número de série, data da calibração
C4		Sonda tipo4, número de série, data da calibração
C5		Sonda tipo5, número de série, data da calibração
C6		Sonda tipo6, número de série, data da calibração
C7		Sonda tipo7, número de série, data da calibração
C8		Sonda tipo8, número de série, data da calibração
GC		Cabeçalho de impressão do instrumento
GB	User	Código do usuário (ajuste com T2xxxxxxxxxxxxx)
	ID=00000000000000000	
H0	Tw= 19.5 ØC	Imprimir temperatura de bulbo úmido
H1	Tg= 22.0 øC	Imprimir temperatura de termômetro de globo
H2	Ta= 21.6 ØC	Imprimir temperatura do ar(bulbo seco);
Н3	Pr= 1018.1 hPa	Imprimir pressão atmosférica
H4	RH= 50.5 %RH	Imprimir umidade relativa
Н5	Va= 0.20 m/s	Imprimir velocidade do vento
Н6	Tr= 18.5 øC	Imprimir temperatura média de radiação
H7	WBGT(i) = 23.0 ØC	Imprimir WGBT interno (sem radiação solar)
H8	WBGT(o) = 24.0 $\&$ C	Imprimir WGBT externo (com radiação solar)
Н9	WCI=_ERROR_ ØC	Imprimir WCI
HA		Imprimir data, hora, Tw, Tg, Ta, Pr, RH, Va, Tr, WBGT(i) WBGT(o) WCI
LN	A00 -A01 -B02 -B03	Imprimir mapa de memória do instrumento: se a uma
		sessão for alocada, um número é mostrado, se estiver
		livre 2 pontos () são mostrados.
LFn	1 Log n.= 0.started	Imprimir estado de n seções da memoria. O número, a data e hora do início do armazenamento são mostrados
		(n = número hexadecimal 0-F). Se a sessão estiver
		vazia :">No Log Data<"
LDn		Imprimir dados armazenados na sessão n.
		Se a sessão estiver vazia: ">No Log Data<"
LEn	&	Cancelar dados armazenados na sessao n.
LEX	&	Cancelar dados armazenados em todas as sessões.
KI	&	Impressao imediata de dados
K0	&	Finaliza impressao de dados
K4	&	Inicia o registro de dados
K5	&	Finaliza o registro de dados
KP	&	funçao=ENABLE automatica
KQ	&	funçao=DISABLE automatica
WC0	δ α	Ajusta o desligar AUTOMATICO
WCI		Ajusta o ligar AUTOMATICO
KA	Sample ler - Osec	L'enura do ajuste do intervalo PKINI
RL II	Sample log = 30sec	Leitura do ajuste do intervalo LOG
WA#	δς.	Ajuste do intervalo PKINI. # é um número hexadecimal 0 D que representa a
		posição do intervalo na lista 0, 1, 5, 10, 3600
		segundos.
WL#	&	Ajuste do intervalo LOG.
		# é um número hexadecimal 1D que representa a
		posição do intervalo na lista 15,, 3600 segundos.

7.2 O PROGRAMA OPERACIONAL B: ANÁLISE DE DESCONFORTO

O HD32.1 é montado com uma interface serial eletricamente isolada RS-232C, e uma interface USB 2.0. Opcionalmente, elas podem ser conectadas usando um cabo serial com conectores sub D 9-polos fêmeas (código 9CPRS232) e um cabo com conectores USB 2.0 (código CP22).

A conexão USB requer a instalação prévia de um driver no software do instrumento. Instalar o driver antes de conectar o cabo USB ao PC (favor verificar os detalhes no capítulo 8.2 Conexão à porta USB 2.0).

Parâmetros padrão da transmissão serial RS232 do instrumento são:

- Taxa Baud 38400 baud
- Paridade Nenhuma
- N. bit 8
- Bit de Parada
- Protocolo Xon/Xoff

1

É possível mudar a taxa baud da porta serial RS232C ajustando o parâmetro "*Selection of the serial transmission speed (Baud Rate)*" (Seleção da velocidade de transmissão serial (Taxa Baud)) no menu (favor verificar o menu no capítulo **5.3.1** *A Taxa Baud*). Os valores possíveis são: 38400, 19200, 9600, 4800, 2400, 1200. Os outros parâmetros de transmissão são fixos.

A conexão USB 2.0 não requer ajuste de parâmetros.

A seleção da porta é feita diretamente pelo instrumento: se a porta USB for conectada ao PC, a porta serial RS232 é automaticamente desabilitada, e vice versa.

Os instrumentos são fornecidos com um jogo completo de questões de comandos e dados a serem enviados através do PC.

Todos os comandos transferidos para o instrumento devem ter a seguinte estrutura:

XXCR onde: **XX** é o código do comando e **CR** é o Retorno de Transporte (ASCII 0D)

Os caracteres do comando XX são exclusivamente superiores aos caracteres do alojamento. Uma vez introduzido um comando correto, o instrumento responde com "&"; quando uma combinação errada de caracteres for introduzida, o instrumento responde, com "?". As cadeias de respostas do instrumento terminam com o envio do comando CR (Retorno do Transporte) e LF (Alimentação da Linha).

Antes de enviar os comandos para o instrumento via porta serial, recomenda-se travar o teclado para evitar conflitos de funcionamento.: use o comando P0. Quando completo, restaure o teclado com o comando P1.

Command	Response	Description
P0	<u>&</u>	Detonação (trava o teclado do instrumento por 70 segundos)
P1	&	Destrava o teclado do instrumento
S0		
G0	Model HD32.1 prog.B	Modelo do instrumento
G1	M=THERMAL MICROCLIMATE	Descrição do modelo
G2	SN=12345678	Número de série do instrumento
G3	Firm.Ver.=01.00	Versão firmware
G4	Firm.Date=2005/10/12	Data da firmware
G5	cal 0000/00/00 00:00:00	Data e hora da calibração
C1		Sonda tipo1, número de série, data da calibração

Command	Response	Description
C2		Sonda tipo2, número de série, data da calibração
C3		Sonda tipo3, número de série, data da calibração
C4		Sonda tipo4, número de série, data da calibração
C5		Sonda tipo5, número de série, data da calibração
C6		Sonda tipo6, número de série, data da calibração
C7		Sonda tipo7, número de série, data da calibração
C8		Sonda tipo8, número de série, data da calibração
GC		Cabeçalho de impressão do instrumento
GB	User ID=0000000000000000000000	Código do usuário (ajuste com T2xxxxxxxxxxxxxxx)
H0	Th= 19.5 øC	Imprimir temperatura na altura da cabeça
H1	Tb= 22.0 ØC	Imprimir temperatura na altura do corpo
H2	Tn= 21.6 øC	Imprimir temperatura de radiômetro efetivo
Н3	Tk= 19.5 øC	Imprimir temperatura na altura do tornozelo
H4	Tf= 19.5 øC	Imprimir temperatura do piso
Н5	Pt= 0.0 W/m2	Imprimir energia do radiômetro efetivo
Н6	Dt= 0.0 ØC	Imprimir temperatura radiante assimétrica do radiômetro efetivo
HA		Imprimir data, hora, Th, Tb, Tn,Tk, Tf, Pt, Dt
LN	A00 -A01 -B02 -B03 	Imprimir mapa de memória do instrumento: se a uma sessão for alocada, um número é mostrado, se estiver livre 2 pontos () são mostrados.
LFn	<pre>!Log n.= 0!started on:!2006/01/01 00:37:32</pre>	Imprimir estado de n seções da memória. O número, a data e hora do início do armazenamento são mostrados (n= número hexadecimal 0-F). Se a sessão estiver vazia :">No Log Data<"
LDn		Imprimir dados armazenados na sessão n. Se a sessão estiver vazia: ">No Log Data<"
LEn	&	Cancelar dados armazenados na sessão n.
LEX	&	Cancelar dados armazenados em todas as sessões.
K1	&	Impressão imediata de dados
K0	&	Finaliza impressão de dados
K4	&	Inicia o registro de dados
K5	<u>گ</u>	Finaliza o registro de dados
KP	<u>گ</u>	função=ENABLE automática
KQ	&	função=DISABLE automática
WC0	<u>گ</u>	Ajusta o desligar AUTOMÁTICO
WC1	&	Ajusta o ligar AUTOMÁTICO
RA	Sample print = 0sec	Leitura do ajuste do intervalo PRINT
RL	Sample log = 30sec	Leitura do ajuste do intervalo LOG
WA#	&	Ajuste do intervalo PRINT . # é um número hexadecimal 0D que representa a posição do intervalo na lista 0, 1, 5, 10,, 3600 segundos.
WL#	&	Ajuste do intervalo LOG. # é um número hexadecimal 1D que representa a posição do intervalo na lista 15,, 3600 segundos.

7.3 O PROGRAMA OPERACIONAL C: GRANDEZAS FÍSICAS

O HD32.1 é montado com uma interface serial eletricamente isolada RS-232C, e uma interface USB 2.0. Opcionalmente, elas podem ser conectadas usando um cabo serial com conectores sub D 9-polos fêmeas (código 9CPRS232) e um cabo com conectores USB 2.0 (código CP22).

A conexão USB requer a instalação prévia de um driver no software do instrumento. Instalar o driver antes de conectar o cabo USB ao PC (favor verificar os detalhes no capítulo 8.2 Conexão à porta USB 2.0).

Parâmetros padrão da transmissão serial RS232 do instrumento são:

- Taxa Baud 38400 baud
- Paridade Nenhuma
- N. bit 8
- Bit de Parada 1
- Protocolo Xon/Xoff

É possível mudar a taxa baud da porta serial RS232C ajustando o parâmetro "*Selection of the serial transmission speed (Baud Rate)*" (Seleção da velocidade de transmissão serial (Taxa Baud)) no menu (favor verificar o menu no capítulo **5.3.1** *A Taxa Baud*). Os valores possíveis são: 38400, 19200, 9600, 4800, 2400, 1200. Os outros parâmetros de transmissão são fixos.

A conexão USB 2.0 não requer ajuste de parâmetros.

A seleção da porta é feita diretamente pelo instrumento: se a porta USB for conectada ao PC, a porta serial RS232 é automaticamente desabilitada, e vice versa.

Os instrumentos são fornecidos com um jogo completo de questões de comandos e dados a serem enviados através do PC.

Todos os comandos transferidos para o instrumento devem ter a seguinte estrutura:

XXCR onde: XX é o código do comando e CR é o Retorno de Transporte (ASCII 0D)

Os caracteres do comando XX são exclusivamente superiores aos caracteres do alojamento. Uma vez introduzido um comando correto, o instrumento responde com "&"; quando uma combinação errada de caracteres for introduzida, o instrumento responde, com "?". As cadeias de respostas do instrumento terminam com o envio do comando CR (Retorno do Transporte) e LF (Alimentação da Linha).

Antes de enviar os comandos para o instrumento via porta serial, recomenda-se travar o teclado para evitar conflitos de funcionamento.: use o comando P0. Quando completo, restaure o teclado com o comando P1.

Command	Response	Description
P0	&	Detonação (trava o teclado do instrumento por 70 segundos)
P1	&	Destrava o teclado do instrumento
S0		
G0	Model HD32.1 prog.C	Modelo do instrumento
G1	M=THERMAL MICROCLIMATE	Descrição do modelo
G2	SN=12345678	Número de série do instrumento
G3	Firm.Ver.=01.00	Versão firmware
G4	Firm.Date=2005/10/12	Data da firmware
G5	cal 0000/00/00 00:00:00	Data e hora da calibração
C1		Sonda tipo1, número de série, data da calibração
C2		Sonda tipo2, número de série, data da calibração
C3		Sonda tipo3, número de série, data da calibração

Command	Response	Description
C4		Sonda tipo4, número de série, data da calibração
C5		Sonda tipo5, número de série, data da calibração
C6		Sonda tipo6, número de série, data da calibração
C7		Sonda tipo7, número de série, data da calibração
C8		Sonda tipo8, número de série, data da calibração
GC		Cabeçalho de impressão do instrumento
GB	User ID=000000000000000000	Código do usuário (ajuste com T2xxxxxxxxxxxxxxx)
H0	Tpt= 19.5 øC	Imprimir temperatura Pt100
H1	RH= 50.0 %	Imprimir %RH
H2	Trh= 21.6 øC	Imprimir temperatura da sonda de RH
Н3	Va= 0.25 m/s	Imprimir velocidade do vento
H4	Fl= 1.5 l/s	Imprimir fluxo de ar da sonda de velocidade do ar
Н5	Tv= 20.5 øC	Imprimir temperatura da sonda de velocidade do ar
Н6	Lux= 550.0 lux	Imprimir lux
НА		Imprimir data, hora, Tpt, RH, Trh, Va, Fl, Tv, Lux1, Lux2, CO ₂ , CO
LN	A00 -A01 -B02 -B03 	Imprimir mapa de memória do instrumento: se a uma sessão for alocada, um número é mostrado, se estiver livre 2 pontos () são mostrados.
LFn	<pre>!Log n.= 0!started on:!2006/01/01 00:37:32</pre>	Imprimir estado de n seções da memória. O número, a data e hora do início do armazenamento são mostrados (n= número hexadecimal 0-F). Se a sessão estiver vazia :">No Log Data<"
LDn		Imprimir dados armazenados na sessão n. Se a sessão estiver vazia: ">No Log Data<"
LEn	&	Cancelar dados armazenados na sessão n.
LEX	&	Cancelar dados armazenados em todas as sessões.
K1	&	Impressão imediata de dados
K0	&	Finaliza impressão de dados
K4	&	Inicia o registro de dados
K5	&	Finaliza o registro de dados
КР	&	função=ENABLE automática
KQ	&	função=DISABLE automática
WC0	&	Ajusta o desligar AUTOMÁTICO
WC1	&	Ajusta o ligar AUTOMÁTICO
RA	Sample print = 0sec	Leitura do ajuste do intervalo PRINT
RL	Sample log = 30sec	Leitura do ajuste do intervalo LOG
WA#	δ.	Ajuste do intervalo PRINT . # é um número hexadecimal 0D que representa a posição do intervalo na lista 0, 1, 5, 10,, 3600 segundos.
WL#	&	Ajuste do intervalo LOG. # é um número hexadecimal 1D que representa a posição do intervalo na lista 15,, 3600 segundos.

7.4 ARMAZENANDO E TRANSFERINDO DADOS PARA UM PC

O instrumento **HD32.1** pode ser conectado a um computador pessoal via uma porta serial RS232C, e trocar dados e informações através de um software DeltaLog10 trabalhando em um ambiente operacional Windows. É possível imprimir os valores medidos numa impressora de 80 colunas (tecla *PRINT*) ou armazenar s dados numa memória interna usando a função *Logging* (tecla MEM). Se necessário, os dados armazenados na memória podem ser transferidos ao PC mais tarde.

7.4.1 A função Logging

A função *Logging* permite o registro das medições registradas pela sonda conectada à entrada. O intervalo de tempo entre duas medidas consecutivas pode ser ajustado de 15 segundo a 1 hora. O registro se inicia pressionando-se a tecla **MEM** e termina pressionando-se a mesma tecla novamente: os dados memorizados desta maneira formam um bloco contínuo de dados.

Veja a descrição dos itens do menu no capítulo"5. MAIN MENU". Se a opção de desligamento automático entre dois registros (veja o par. >> 5.2.2 Modo Auto Desligamento) estiver habilitada, após pressionar a tecla MEM o instrumento registra o primeiro dado e desliga. 15 segundos antes do próximo instante de registro, ele liga novamente para capturar a nova amostra, e então desliga.

Os dados armazenados na memória podem ser transferidos para um PC usando um comando (veja par. 5.2.5 Gerenciador do Arquivo *Log*).Durante a transferência de dados o display mostra a mensagem DUMP; para parar a transferência de dados pressionar ESC no instrumento ou ESC no PC.

7.4.2 A função Erase: limpando a memória

Para limpar a memória use a função Erase Log (see par. *5.2.5 Gerenciador do Arquivo Log*).O instrumento inicia a limpeza da memória interna, ao fim da operação, volta ao display normal

OBSERVAÇÕES:

- A transferência de dados não faz com que a memória seja apagada, a operação pode ser repetida quanta vezes for necessária.
- Os dados armazenados permanecem na memória independente das condições da carga da bateria.
- Para imprimir os dados com uma impressora interface paralela, você deve usar um adaptador serial paralelo (não fornecido).
- A conexão direta entre o instrumento e a impressora via conector USB não funciona.
- Algumas teclas são desabilitadas durante o registro. As seguintes teclas trabalham: MEM, SETUP, ENTER e ESC.
- Pressionar as teclas **MEM** e **SETUP** não tem efeito sobre os dados registrados se estas teclas forem pressionadas **depois** de iniciar a gravação, de outra forma o que se segue é válido.

7.4.3 A função Print

A função PRINT envia os dados de medidos diretamente para as portas RS232 ou USB, em tempo real. As unidades de impressão de dados das medições são as mesmas que aquelas usadas no display. A função é iniciada pressionando **PRINT**. O intervalo de tempo entre duas impressões consecutivas pode ser ajustado de 15 segundos a 1 hora (favor verificar o item de menu **Print interval** no par. 5.3.2 O intervalo de *impressão*). Se o intervalo de impressão for igual a 0, pressionando-se **PRINT** um único dado é enviado para o dispositivo conectado. Se o intervalo de impressão for maior que 0, a transferência de dados continua até que o operador finalize pressionando **PRINT** novamente. A mensagem "PN" é mostrada no topo do display.

OBSERVAÇÃO: Ao ajustar a taxa baud, checar a velocidade da impressora.

8. CONEXÃO AO A PC

O HD32.1 é montado com duas portas para conectar o instrumento ao PC:

- A porta serial RS232C com cabo de modem nulo código 9CPRS232. o cabo tem dois conectores sub D 9-polos fêmea.
- A porta USB 2.0 com cabo código **CP22**. O cabo tem um conector USB tipo A para conexão ao PC e outro USB tipo B para conexão ao instrumento.

Os instrumentos são fornecidos com o **software DeltaLog10**. O software gerencia a conexão, as operações de transferência de dados, a apresentação gráfica e a impressão das medições capturadas ou registradas.

O software DeltaLog10é complementado com "On-line Help" – "Ajuda On-line" – (também em formato PDF) que descreve suas características e funções.

O instrumento é compatível com o programa de comunicação HyperTerminal fornecido com os sistemas operacionais Windows (do Windows 98 ao Windows XP).

8.1 CONEXÃO À PORTA SERIAL RS232-C

- 1. O instrumento de medição deve estar desligado
- 2. Usando o cabo Delta Ohm 9CPRS232, conectar o instrumento de medição à primeira porta serial livre (COM) do PC.
- 3. Ligar o instrumento e ajustar a taxa baud para 38400 (Tecla SETUP >> "*Serial*" >> "*Baud Rate* >> selecionar 38400 usando as teclas de setas >> confirmar com ENTER). Os parâmetros permanecem na memória.
- 4. Lançar a aplicação DeltaLog10 e pressionar CONNECT. Espere para que a conexão ocorra e siga as indicações na tela. Para uma descrição da aplicação DeltaLog10, favor verificar a sua Ajuda on-line.

8.2 CONEXÃO À PORTA USB 2.0

Proceder como se segue:

- 1. Não conectar o instrumento na porta USB enquanto isso não for expressamente requerido por ele.
- 2. Inserir o DeltaLog10 CD-Rom e selecionar o item "Install/Remove USB driver".
- 3. A aplicação verifica a presença de drivers no PC.: a instalação inicia se eles não estiverem presentes, se eles já foram instalados, os drivers são removidos pressionando-se a tecla.
- 4. O assistente de instalação orienta a licença de usuário do software: para prosseguir, os termos de usuário do software devem ser aceitos clicando em YES.
- 5. Na próxima página o folder onde os drivers serão instalados é indicado: confirmar sem modificação.
- 6. Complete a instalação clicando em *Finish (FIM)*. Espere uns poucos segundos até que a página DeltaLog10 apareça.
- 7. Fechar DeltaLog10.
- 8. Conectar o instrumento à porta USB do PC. Quando o Windows detectar o novo dispositivo, o "*New software installation wizard*" (*Novo assistente de instalação de software*) é ativado.

- 9. Se for necessária uma autorização para procura de um driver mais atualizado, selecionar *NO* e prosseguir.
- 10. Na janela de instalação, selecionar o item "Install from a specific list or way" (Instalar de uma lista ou caminho específico).
- 11. Na próxima janela selecionar a opção "Search the best driver available in these ways" Procurar a o melhor driver disponível neste caminho e "Include this location in the search" (Incluir esta localização na busca).
- 12. Indicar o folder de instalação fornecido para o ponto 5 pelo comando Browse:

C:\Program Files\Texas Instruments\USB-Serial Adapter

Confirmar com OK.

- 13. Selecionar "*Continue*" se a mensagem for de que o software não percorreu o teste Windows Logo
- 14. Os drivers USB estão instalados: Ao final, clicar em "Finish".
- 15. **O assistente de instalação requer a locação de arquivos mais uma vez:** repetir os passos mencionados acima e fornecer a locação do mesmo folder (veja ponto 12).
- 16. Espere: a operação pode levar alguns minutos.
- 17. O procedimento de instalação agora está completo: o dispositivo será detectado a cada conexão automaticamente.

Para verificar se a operação foi totalmente bem sucedida, em CONTROL PANEL clicar duas vezes em SYSTEM. Selecionar "*Device Manager*" e conectar o instrumento à porta USB. Os seguintes itens deverão aparecer:

- "UMP Devices >> UMP3410 Unitary driver" e "Ports (COM and LPT) >> UMP3410 Serial Port (COM#)" para Windows 98 e Windows Me,
- "Schede seriali Multiport >> TUSB3410 Device" e "Ports (COM and LPT) >> USB-Serial Port (COM#)" para Windows 2000, NT e Xp

Quando o cabo USB for desconectado, estes dois itens desaparecem e voltam quando ele for conectado novamente.

Observação

1. Se o instrumento for conectado à porta USB **antes** da instalação dos drivers, o Windows detecta a presença de um dispositivo desconhecido: neste caso, cancelar a operação e repetir o procedimento ilustrado no início desta seção.

2. A documentação fornecida com o CDRom DeltaLog10 inclui uma versão detalhada deste capítulo com imagens. Além disso os passos necessários para remover os drivers USB também são relatados.

9. SINAIS E FALHAS DO INSTRUMENTO

A tabela a seguir é uma lista de todas as indicações de erro e informações mostradas pelo instrumento e fornecidas ao usuário em diferentes situações de operação:

Indicações do display	Explicação
	Aparece se o sensor pertinente à grandeza física indicada não estiver presente ou estiver em falha.
OVFL	Abundância de medição: aparece quando a sonda detecta um valor que excede a faixa de medição.
UFL	Subfluxo aparece quando a sonda detecta uma valor mais baixo do que o range de medições esperado.
WARNING: MEMORY FULL!!	O instrumento não pode armazenar mais dados, o espaço da memória está cheio.
PN	Mensagem piscando. Aparece na primeira linha do display quando a função de transferência de dados está habilitada (Tecla PRINT).
LOG	Mensagem piscando. Aparece na primeira linha do display e indica uma sessão de registro.

10. Símbolo de Bateria e substituição de bateria – Fornecimento externo de energia

O símbolo da bateria

o símbolo constante da bateria no display mostra o estado da carga. Para mostrar que as baterias descarregaram, o símbolo "esvazia". Quando a carga diminui mais ele começa a piscar.

Neste caso, as baterias devem ser substituídas o mais rápido possível.

Se você continuar a usa-las, o instrumento pode não mais assegurar medições corretas por muito tempo. Os dados da memória são mantidos.

O símbolo da bateria muda para [~] quando uma fonte externa de energia for conectada.

Para substituir as baterias, proceder como se segue:

- 1. desligar o instrumento;
- 2. desconectar a fonte externa de energia, se conectada;
- 3. desparafuse a tampa da bateria no sentido anti horário. Não puxe os fios de conexão da bateria pois eles podem se quebrar;
- 4. substituir as baterias (4 baterias alcalinas 1.5 V C BABY). Checar se as polaridades das baterias seguem a indicação no alojamento da bateria;
- 5. Substituir o alojamento da bateria e aparafusar a tampa no sentido horário.

O instrumento pode receber energia externa, usando, por exemplo, o fornecedor de energia estabilizada SWD10 entrada 100÷240Vac saída 12Vdc – 1000mA (o positivo está no meio).

O diâmetro externo do conector de fornecimento de energia é de 5,5mm, o diâmetro interno é de 2,1mm.

Aviso: O fornecedor de energia não pode ser usado como carregador de bateria. Se o instrumento for conectado a um fornecedor externo de energia, o símbolo [\sim] será mostrado no lugar do símbolo da bateria.

MAL FUNCIONAMENTO APÓS LIGAR O INSTRUMENTO DEPOIS DA SUBSTITUIÇÃO DAS BATERIAS

Depois de substituir as baterias, o instrumento pode reiniciar incorretamente, neste caso, repita a operação.

Depois de desconectar as baterias, espere uns poucos minutos para permitir que os condensadores de circuito descarreguem completamente, então recoloque as baterias.

10.1 Aviso sobre uso de bateria

- As baterias devem ser removidas quando o instrumento não for usado por longo tempo.
- Baterias descarregadas devem ser substituídas imediatamente.
- Evite perda de líquido das baterias.
- Sempre usar baterias de boa qualidade a prova de água, se possível alcalinas. Às vezes, no mercado, é possível encontrar baterias novas com capacidade insuficiente de carga.

11. ARMAZENAGEM DO INSTRUMENTO

Condições de armazenamento do instrumento:

- Temperatura: -25...+65°C.
- Umidade: Abaixo de 90%RH sem condensação.
- Não guardar o instrumento em lugares onde:
 - A umidade for alta.

O instrumento possa ser exposto diretamente à luz do sol.

O instrumento possa ser exposto a uma fonte de alta temperatura.

O instrumento possa ser exposto à vibrações fortes.

O instrumento possa ser exposto ao vapor, sal ou qualquer gás corrosivo.

Algumas partes do instrumento são feitas de plástico ABS, policarbonato: não usar nenhum solvente incompatível para limpeza.
12. IMPRESSÃO DOS RELATÓRIOS DE MEDIÇÃO

Veja abaixo alguns pequenos exemplos de relatórios criados através do software Deltalog10 para diferentes ambientes.

Relta	Relatór Ambientes moderados: Detern	rio de avaliação ninação do bem estar térm	ico mediante	Mod. 001 rev.0
OHM	cálculo dos	índices PMV e PPD		Page 2 of 7
	Norm	a ISO 7730		
Data levantamento:				
Data de início:	2006/10/05	Hora de início:	10:30:00	
Data de término:	2006/10/05	Hora de término:	10:38:00	
Sede do levantamen	to:			
Empresa:	Delta OHM			
Endereço:	Via Marconi, 5			
Cidade:	35030 Caselle di Sel	vazzano		
Estado:	Padova			
País:	Italia			
Contato:	Paolo Bianchi			
Telefone/fax:	0039-0498977150 - Fa	x 0039-049635596		
e-mail:	deltaohm@tin.it			
Autor do relatório:				
Autor:	Mario Rossi			
Endereco:	Via Marconi, 5			
Cidade:	35030 - Caselle di S	Selvazzano		
Estado:	Padova			
País:	Italia			
Contato:	Mario Rossi			
Telefone/fax:	0039-0498977150 - Fa	x 0039-049635596		
e-mail:	deltaohm@tin.it			
	Padicida	Vorified	ido e Anrovado	
Data	Assinatura	Data	Assin	atura

<i>Nelta</i> OEM	Rela Ambientes moderados: Det cálculo d	atório de avaliação terminação do bem estar térmico mediante dos índices PMV e PPD	Mod. 001 rev.0 Page 3 of 7
	Ν	Norma ISO 7730	
Instrumentação util	lizada:		
Código Instru	mento:	Model HD32.1 prog.A	
Versão do fir	mware:	Firm.Ver.=01.00	
Data do firmw	vare (aaaa/mm/dd):	Firm.Date=2005/10/12	
Número de sér	rie instrumento:	SN=12345678	
Código usuári	.0:	User ID=00000000000000000	
Sondas utilizadas:			
Descrição ent	rada Ch.1		
Tipo de sonda	a: Pt100		
Data Cal.:	2004/09/13		
D	0/034321		
Descriçao ent Tipo de sonda	a: Pt100 Tg 50		
Data Cal.:	2005/06/27		
S/N:	05013380		
Descrição ent Tipo de sonda	crada Ch.3 a: RH		
Data Cal.:	2002/01/02		
S/N:	04006422		
Descrição ent	crada Ch.4		
Tipo de sonda	a: Hot wire		
Data Cal.:	2002/07/05		
S/N:	04005175		
Descrição ent	rada Ch.5		
Data Cal.:	not present		
S/N:	not present		
Descrição ent	rada Ch.6		
Tipo de sonda	a: not present		
Data Cal.:	not present		
5/N:	not present		
Descrição ent Tipo de sonda	rada Ch.7 a: not present		
Data Cal.:	not present		
S/N:	not present		
Descrição ent	crada Ch.8		
Tipo de sonda	a: not present		
Data Cal.:	not present		
5/N:	not present		

	Relatório de avaliação	
<i>Delta</i> OHM	Ambientes moderados: Determinação do bem estar térmico mediante cálculo dos índices PMV e PPD	Mod. 001 rev. Page 4 of 7
	Norma ISO 7730	
anamiaão do local d	le charmen în	
escrição do locar d	e ubsei vaçau.	
Ambiente modera	ado	
Interior de edifici Indivíduo submet	o ido a observação de corporatura regular (superfície equivalente 1,8 m2)	
escriçao Vestimen	fa:	
Vestimenta diária		1.5 clo
Roupa de baixo d	ae mangas e pernas curtas, camisa, carças, jaqueta, sapatos	
escrição Atividado	2:	
Atividade sedenté	ria (escritária, casa, escala, laboratária)	70 W/m2
Anviade sedenta		/0 W/ IIIZ

<i>Selta</i> OEM	Relatório de avaliação Ambientes moderados: Determinação do bem estar térmico mediante cálculo dos índices PMV e PPD Norma ISO 7730	Mod. 001 rev. Page 7 of 7
Indicações sobre as n	nedições:	
Temperatura de glo	potermometro, Tg (°C)	22
Temperatura de bul	20 úmido, Tw (°C)	21,8
Resultado global: Voto Médio Previsto	- PMV - (0,7
Percentual prevista c	le insatisfeitos PPD 14	1,7

Ambientes que	entes: Determinação do índice de estresse térmico WBGT
	Norma ISO 7243
	Delta OHM
	Via Marconi, 5
	35030 Caselle di Selvazzano
	Padova
	Italia
INTRODUÇÃO	
O WBGT (<i>Wet Bulb</i> utilizado para a av encontradas experin	Globe Temperature) (UNI, 1996) é um índice empírico de temperatura que valiação dos ambientes térmicos muito quentes, derivado das correlaçã nentalmente entre parâmetros microclimáticos e reações fisiológicas de un e indivíduos.
Para a determinação conhecer a temperatu WBGT utiliza alguma ambiente em exame.	o narvolados. o das condições de estresse térmico no interior de um ambiente é necessá ura, a velocidade e a umidade do ar, além da temperatura média radiante. O índ as grandezas destas derivadas para caracterizar, do ponto de vista térmico.
FINALIDADE E CA	AMPO DE APLICAÇÃO
A finalidade da prese	nte análise é a avaliação do índice WBGT em um ambiente térmico quente.
REFERÊNCIAS N	ORMATIVAS
Norma ISO 7243	
NOTAS	
espaço notas	

<i>Delta</i> OHM	Ambientes quentes : Determ	inação do índice de estre: WBGT	sse térmico	Mod. 002 rev.0 Page 2 of 6
	Norm	a ISO 7243		
Data de infeier	2006/10/05	Hone de infeier	10.20.00	
Data de término:	2006/10/05	Hora de término:	10:38:00	
Sede do levantament	0:			
Empresa:	Delta OHM			
Endereço:	Via Marconi, 5			
Cidade:	35030 Caselle di Sel	vazzano		
Estado	Padova			
País:	Italia			
Contato:	Paolo Bianchi			
Telefono/fax:	0039-0498977150 - Fa	x 0039-049635596		
e-mail:	deltaohm@tin.it			
Autor do relatório:				
Autor:	Mario Rossi			
Endereco:	Via Marconi, 5			
Cidade:	35030 - Caselle di S	elvazzano		
Estado	Padova			
País:	Italia			
Contato:	Mario Rossi			
Telefono/fax:	0039-0498977150 - Fa	x 0039-049635596		
-mail.	deltaohm@tin_it			
	Redigido	Verifica	ido e Aprovado	
Data	Assinatura		Assin	atura

<u>Nelta</u>	Rela Ambientes quentes : Dete	atório de avaliação erminação do índice de estresse térmico WBGT	Mod. 001 rev.0 Page 3 of 6
	Ν	Norma ISO 7243	rage 5 or 0
Instrumentação utilizada			
Código Instrumen	to:	Model HD32.1 prog.A	
Versão do firmwa	re:	Firm.Ver.=01.00	
Data do firmware	(aaaa/mm/gg):	Firm.Date=2005/10/12	
Número de série	instrumento:	SN=12345678	
Código usuário:		User ID=00000000000000000	
Sondas utilizadas:			
Descrição entrad	a Ch.1		
Tipo di sonda:	Pt100		
Data Cal.:	2004/09/13		
S/N:	87654321		
Descrição entrad	a Ch.2		
Tipo di sonda:	Pt100 Tg 50		
Data Cal.:	2005/06/27		
S/N:	05013380		
Descrição entrad	a Ch.3		
Data Cal .	2002/01/02		
S/N:	04006422		
Descricão entrad	a Ch.4		
Tipo di sonda:	not present		
Data Cal.:	not present		
S/N:	not present		
Descrição entrad	a Ch.5		
Tipo di sonda:	not present		
Data Cal.:	not present		
- · · · · ·	not present		
Descrição entrad	a Ch.6 not present		
Data Cal.:	not present		
S/N:	not present		
Descrição entrad	a Ch.7		
Tipo di sonda:	not present		
Data Cal.:	not present		
S/N:	not present		
Descrição entrad Tipo di sonda:	a Ch.8 not present		
Data Cal.:	not present		
S/N:	not present		

Ambientes quentes :: Determinação da castresse térmico WeGT Norma ISO 7243 Met. do 1 ev Page 4 or 6 Met. do 1 ev Page		Relatório de avaliação	
Page 4 or 6 Norma ISO 7243 escrição do local de observação: Ambiente muito quente: Interior de cáficio em ausência de irradiação solar Pessoa aclimatada ao calor Individuo submetido a observação de corporatura regular escrição Vestimenta: escrição Vestimenta Vestimenta diária: Roupa de baixo, camiseta de mangas curtas, camisa, calças, jaqueta, meias, sapatos 1, 5 clo escrição Attividade sedentária (escritório, casa, escola, laboratório) 70 W/m2	<u>Selta</u>	Ambientes quentes : Determinação do índice de estresse térmic WBGT	O Mod. 001 rev.
cecrição do local de observação: Ambiente muito quente: Interior de edifició em ausência de irradiação solar Pessoa aclimatida ao culor Individuo submetido a observação de corporatura regular cecrição Vestimenta: Vestimenta diária: Roupa de baixo, camiseta de mangas curtas, camisa, calças, jaqueta, meias, sapatos 1,5 clo everição Atividades cecrição Atividade sedemária (escritório, casa, escola, laboratório) 70 W/m2		Norma ISO 7243	Page 4 of 6
escrição do local de observação: Ambiente muito quente: Interior de cáficio em ausência de irradiação solar Pessoa acimanda ao calor Indivíduo submetido a observação de corporatura regular cerrição Vestimenta:			
Anbiente muito quente: Interior de cdifício em auséncia de irradiação solar Pesoa acilmanda ao calor Individuo submetido a observação de corporatura regular certição Vestimenta: Vestimenta diária: Roupa de baixo, camiseta de mangas curtas, camisa, calças, jaqueta, meias, sapatos 1,5 clo everição Atividade: Tipo de ocupação: Atividade sedentária (escritório, casa, escola, laboratório) 70 W/m2	escrição do local do	observação:	
escrição Vestimenta diária: Roupa de baixo, camiseta de mangas curtas, camisa, calças, jaqueta, meias, sapatos <u>1,5 clo</u> escrição Atividade: Tipo de ocupação: Atividade sedentária (escritório, casa, escola, laboratório) <u>70 W/m2</u>	Ambiente muito q Interior de edifício Pessoa aclimatada Indivíduo submeti	uente:) em ausência de irradiação solar ao calor do a observação de corporatura regular	
Vestimenta diária: Roupa de baixo, camiseta de mangas curtas, camisa, calças, jaqueta, meias, sapatos <u>1,5 clo</u> exertção Atividade: Tipo de ocupação: Atividade sedentária (escritório, casa, escola, laboratório) <u>70 W/m2</u>	escrição Vestiment	a:	
escrição Atividade: Tipo de ocupação: Atividade sedentária (escritório, casa, escola, laboratório) 70 W/m2	Vestimenta diária Roupa de baixo, c	amiseta de mangas curtas, camisa, calcas, jaqueta, meias, sapatos	1,5 clo
eerição Atividade sedentária (escritório, casa, escola, laboratório) 70 W/m2	1		
escrição Atividade sedentária (escritório, casa, escola, laboratório) <u>70 W/m2</u>			
escrição Atividade: Tipo de ocupação: Atividade sedentária (escritório, casa, escola, laboratório) <u>70 W/m2</u>			
ripo de ocupação: Atividade sedentária (escritório, casa, escola, laboratório) <u>70 W/m2</u>			
Tipo de ocupação: Atividade sedentária (escritório, casa, escola, laboratório) 70 W/m2	escrição Atividade		
Tipo de ocupação: Atividade sedentária (escritório, casa, escola, laboratório)			70 14/2
	Tipo de ocupação	: Atividade sedentária (escritório, casa, escola, laboratório)	70 W/III2

<i>Nelta</i> OEM	Relatório de avaliação Ambientes quentes : Determinação do índice de estresse térmico WBGT Norma ISO 7243	Mod. 001 rev. Page 6 of 6
Indicações sobre as m	edições:	·
Temperatura de glob	otermômetro, Tg (°C)	22,7
Temperatura de bulb	o úmido, Tw (°C)	16,8
Resultado global: Índice de estresse térr	nico WBGT (°C)	18,6
Valor limite do WBC	T(°C)	28,0

12.3 ANALISE DE DESCONFORTO

Delta	Relatór Ambientes moderados	io de avaliação E Análise de desconforto	local Mod. 001 rev.0 Page 2 of 7
	No	orma ISO 7730	rage 2 or 7
Data levantamento:			
Data de início:	2006/10/05	Hora de início:	10:30:00
Data de término:	2006/10/05	Hora de término:	10:38:00
Sede do levantamento	:		
Empresa:	Delta OHM		
Endereço:	Via Marconi, 5		
Cidade:	35030 Caselle di Sel	vazzano	
Estado:	Padova		
País:	Italia		
Contato:	Paolo Bianchi		
Telefone/fax:	0039-0498977150 - Fa	x 0039-049635596	
e-mail:	deltaohm@tin.it		
Autor: Endereço: Cidade:	Via Marconi, 5 35030 - Caselle di S	elvazzano	
Estado.:	Padova		
País:	Italia		
Contato:	Mario Rossi		
Telefono/fax:	0039-0498977150 - Fa	x 0039-049635596	
e-mail:	deltaohm@tin.it		
	Redigido	Verifica	ndo e Aprovado
Data	Assinatura	Data	Assinatura
		0.0000000000000000000000000000000000000	

Nelta	Rappo Ambienti moderat	orto di valutazione ti: Analisi di discomfort locale	Mod. 001 rev.0
	N	orma ISO 7730	Page 3 of 7
	110		
Strumentazione utilizza	ta:		
CodiceStrumento	:	Model HD32.1 prog.A	
Versione del fi:	rmware:	Firm.Ver.=01.00	
Data del firmwa:	re (aaaa/mm/gg):	Firm.Date=2005/10/12	
Numero di serie	strumento:	SN=12345678	
Codice utente:		User ID=000000000000000000000000000000000000)
Sonde utilizzate:			
Descrizione ing	resso Ch.1		
Tipo di sonda:	Pt100 h-b		
Data Cal.:	2004/09/13		
S/N:	87654321		
Descrizione ing: Tipo di sonda:	resso Ch.2 Pt100 k-f		
Data Cal.:	2005/06/27		
S/N:	05013380		
Descrizione ing	resso Ch.3		
Tipo di sonda:	NR		
Data Cal.:	2002/01/02		
5/N:	04006422		
Descrizione ing:	resso Ch.4		
nipo di sonda:	not present		
S/N:	not present		
5,	not probent		
Descrizione ing: Tipo di sonda:	not present		
Data Cal.:	not present		
S/N:	not present		
Descrizione ing	resso Ch.6		
Tipo di sonda:	not present		
Data Cal.:	not present		
S/N:	not present		
Descrizione ing:	resso Ch.7		
Tipo di sonda:	not present		
Data Cal.:	not present		
5/N:	not present		
Descrizione ing: Tipo di sonda:	resso Ch.8		
Data Cal.:	not present		
S/N:	not present		
	-		

Indicações sobre as medições: Temperatura da cabeça, Th (°C) Temperatura do abdome, Tb (°C) Temperatura dos tornozelos, Tk (°C) Temperatura do pavimento, Tf (°C) Temperatura de assimetria radiante, DT (°C) Resultado global: PD: Insatisfeitos de diferença de temperatura Cabeça-Tornozelos PD: Insatisfeitos de navimento guerte e frio	24 22,1 20 18 21,9
Indicações sobre as medições: Temperatura da cabeça, Th (°C) Temperatura do abdome, Tb (°C) Temperatura dos tornozelos, Tk (°C) Temperatura do pavimento, Tf (°C) Temperatura de assimetria radiante, DT (°C) Resultado global: PD: Insatisfeitos de diferença de temperatura Cabeça-Tornozelos	24 22,1 20 18 21,9
Temperatura da cabeça, Th (°C) Temperatura do abdome, Tb (°C) Temperatura dos tornozelos, Tk (°C) Temperatura do pavimento, Tf (°C) Temperatura de assimetria radiante, DT (°C) Resultado global: PD: Insatisfeitos de diferença de temperatura Cabeça-Tornozelos PD: Insatisfeitos de pavimento quento a frio	24 22,1 20 18 21,9
Temperatura do abdome, Tb (°C) Temperatura dos tornozelos, Tk (°C) Temperatura do pavimento, Tf (°C) Temperatura de assimetria radiante, DT (°C) Resultado global: PD: Insatisfeitos de diferença de temperatura Cabeça-Tornozelos PD: Insatisfeitos de pavimento quento a frio	22,1 20 18 21,9
Temperatura dos tornozelos, Tk (°C) Temperatura do pavimento, Tf (°C) Temperatura de assimetria radiante, DT (°C) Resultado global: PD: Insatisfeitos de diferença de temperatura Cabeça-Tornozelos PD: Insatisfeitos de pavimento quento a frio	20 18 21,9
Temperatura do pavimento, Tf (°C) Temperatura de assimetria radiante, DT (°C) Resultado global: PD: Insatisfeitos de diferença de temperatura Cabeça-Tornozelos PD: Insatisfeitos de pavimento querte a frio	18 21,9
Resultado global: PD: Insatisfeitos de diferença de temperatura Cabeça-Tornozelos	
Resultado global: PD: Insatisfeitos de diferença de temperatura Cabeça-Tornozelos	
PD: Insatisfeitos de diferença de temperatura Cabeça-Tornozelos	
PD: Insatisfaitos de pavimento quenta a fria	9 %
D. msausienos de paviniento quente e mo	13 %
Assimetria Radiante Vertical: PD teto quente	64 %
Roupa de baixo de mangas e pernas curtas, camisa, calças, jaqueta, sapatos	
Descrição Atividade:	
Atividade sedentária (escritório, casa, escola, laboratório)	70 W/m2

12.4 AMBIENTES QUENTES

	Rela	tório de avaliação			
<u>Deltə</u> OHM	Ambientes muito quentes: De mediante cálculo da No	terminação do estresse tér 1 solicitação térmica previ 1 orma ISO 7933	mico de calor sível	Mod. 001 rev.0 Page 2 of 7	
Data lovantamenta					
Data de início:	2006/10/05	Hora de início:	10:30:00		
Data de término:	2006/10/05	Hora de término:	10:38:00		
Sede do levantamer	nto:				
Empresa:	Delta OHM				
Endorogo:	Via Marconi, 5				
Cidade:	35030 Caselle di Se	lvazzano			
Estado:	Padova				
País:	Italia				
Contato:	Paolo Bianchi				
Telefone/fax:	0039-0498977150 - F	ax 0039-049635596			
e-mail:	deltaohm@tin.it				
Autor do relatório:					
Autor:	Mario Rossi				
Endereço:	Via Marconi, 5				
Cidade:	35030 - Caselle di	Selvazzano			
Estado:	Padova				
País:	Italia				
Contato:	Mario Rossi				
Telefone/fax:	0039-0498977150 - F	ax 0039-049635596			
e-mail:	deltaohm@tin.it				
	Dodinido	¥7	do o Annova Ja		
	Realgiuo	verifica	Verificado e Aprovado		
.	▲ <u>ann</u> ● 20 ann -				

	Relatório de avaliação			
Selta	Ambientes muito quentes: Determinação do estresse	térmico de calo	r Mod. 0	01 rev.
	mediante cálculo da solicitação térmica pr	evisivel	Page	4 of 7
	Norma ISO 7933			
scrição do local	de observação:			
Ambiente muito	quente:			
Interior de edifíc	io io			
marviauo suome	nuo a observação de corporatura regular			
escrição Vestime	nta:			
Vestimenta diár	a:		15 01	0
Roupa de baixo	de mangas e pernas curtas, camisa, calças, jaqueta, sapatos		1,5 01	.0
Parametri sog	zetto:	mocco	75 0	ŀa
Altura		a	1,8	m
O indivíduo po	le beber livremente?	D	sì	
Fluxo mecânico)	W	0	W
Postura		Posture	2	,
Índice estático	le permeabilidade ao vapor	imst	0,38	
Fração da supe	fície corpórea recoberta de vestimenta refletente	An	0.55	
Emissividade d	a vestimenta refletente	Ар	0,55	
Q indivíduo est	vishe?	Fr	0,12	
Velocidade do		Walkand	no 0 0	
Foi definida un	a direção de caminho?	defdir	0,0	111/3
Ângulo entre a	direção do movimento e a direção do vento	THETA	0.0	0
Porcentagem de	e aclimatamento	accl	100	
Descrição Ativid	ade:			
Atividade seden	tária (escritório, casa, escola, laboratório)		70 W/	′m2

<i>Delta</i> OHM	Relatório de avaliação Ambientes muito quentes: Determinação do estres mediante cálculo da solicitação térmica	sse térmico de o previsível	calor Mod. Pag	001 rev. ge 7 of 7
	Norma ISO 7933			
ndicações sobre as	medições:			
Femperatura do	ar, Ta (°C)		35	
Jmidade Relativ	/a (%)		65	
elocidade do ar	(m/s)	, ······	1 29	
emperatura med			20	
antada glabalı				
	_	_		
Temperatura re	tal	Tre	37,1	°C
Perda de água		Water loss	2118	g
Tempo máximo	o de exposição admitido para o acúmulo térmico	DlimTre	480	mi
Tempo máximo indivíduo médi	o de exposição admitido para a perda de água, o	Dlimloss50	480	miı
Tempo máximo da população la	o de exposição admitido para a perda de água, 95% aborativa	Dlimloss95	480	miı

	Relatório de avaliação
Ambientes muito	frios: Determinação dos índices de estresse de frio IREQ,WCI, DLE, RT
	Norma ISO 11079
	Delta OHM
Malta	Via Marconi, 5
	35030 Caselle di Selvazzano
	Padova
	Italia
INTRODUÇÃO	
o restriamento do núcleo, o o sucessivamente aqueles cor Por efeito da regulação vaso corpo advém o estreitamento mais suficiente para garantir surge o arrepio que comport produção de trabalho mecân As condições de estresse téi avaliadas através do procedi IREQ. Além disso, os efeitos mediante uso do índice WCI	organismo reage ativando inicialmente os mecanismos vasomotores e mportamentais. pomotora e a fim de reduzir a circulação sanguínea nas zonas periféricas do o dos esfíncteres dos capilares periféricos; quando este mecanismo não é a homotermia e o núcleo do corpo se resfria abaixo dos 35°C (hipotermia), a a ativação dos grupos musculares com geração de energia térmica sem nico em relação ao ambiente externo. rmico às quais são submetidos os indivíduos nos ambientes muito frios são imento contido na norma UNI ENV ISO 11079:2001 que utiliza o índice s da exposição ao frio das partes do corpo não protegidas são examinados
FINALIDADE E CAMPO) DE APLICAÇÃO
A infandade da presente ana	anse e a determinação dos indices inclue, vvoi, DEL, NT.
REFERÊNCIAS NORMA	ATIVAS
Norma ISO 11079	
NOTAS	
espaço notas	
espaço notas	
espaço notas	

Nelta	Relaté Ambientes muito frios: Deter IREQ	prio de avaliação minação dos índices de es ,WCI, DLE, RT	stresse de frio	Mod. 001 rev.0
	Nor	ma ISO 11079		Tage 2 010
Data levantamento:				
Data de início:	2006/10/05	Hora de início:	10:30:00	
Data de término:	2006/10/05	Hora de término:	10:38:00	
Sede do levantamen	ito:			
Empresa:	Delta OHM			
Endereço:	Via Marconi, 5			
Cidade:	35030 Caselle di Se	lvazzano		
Estado:	Padova			
País:	Italia			
Contato:	Paolo Bianchi			
Telefone/fax:	0039-0498977150 - F	ax 0039-049635596		
e-mail:	deltaohm@tin.it			
Autor do relatório:				
Autor:	Mario Rossi			
Endereço:	Via Marconi, 5			
Cidade:	35030 - Caselle di	Selvazzano		
Estado:	Padova			
País:	Italia			
Contato:	Mario Rossi			
Telefone/fax:	0039-0498977150 - F	ax 0039-049635596		
e-mail:	deltaohm@tin.it			
		Verificado e Aprovado		
	Redigido	Verifica	ido e Aprovado	

<i>Deltə</i> Olimi	Re Ambientes muito frios: D IR N	latório de avaliação eterminação dos índices de estresse de frio EQ,WCI, DLE, RT forma ISO 11079	Mod. 001 rev.0 Page 3 of 8
Instrumontação uti	lizada		
Código Instru		Model HD32 1 prog A	
courgo instit	menco.		
Versão do fir	mware:	Firm.Ver.=01.00	
Data do firmw	vare (aaaa/mm/dd):	Firm.Date=2005/10/12	
Número de sér	rie instrumento:	SN=12345678	
Código usuári	.0:	User ID=00000000000000000	
Sondas utilizadas:			
Descrição ent	rada Ch.1		
Tipo de sonda	1: Pt100		
Data Cal.: s/N·	2004/09/13 87654321		
Descrição ent	rada Ch ?		
Tipo de sonda	a: RH		
Data Cal.:	2005/06/27		
S/N:	05013380		
Descrição ent	rada Ch.3		
ripo de sonda Data Cal :	1: Tg		
S/N:	04006422		
Descrição ent	rada Ch.4		
Tipo de sonda	a: Hot wire		
Data Cal.:	2002/01/02		
S/N:	04006420		
Descrição ent	rada Ch.5		
Data Cal.:	not present		
S/N:	not present		
Descrição ent	rada Ch.6		
Tipo de sonda	a: not present		
Data Cal.:	not present		
5/N:	not present		
Descrição ent Tipo de sonda	rada Ch.7 a: not present		
Data Cal.:	not present		
S/N:	not present		
Descrição ent	rada Ch.8		
ripo de sonda Data Cal :	not present		
S/N:	not present		
	TOO PLODONO		

Nelta Ambi	Relatório de avaliação ientes muito frios: Determinação dos ín IREQ,WCI, DLE, RT	o dices de estre	esse de fric	Mod. 001 re	
	Norma ISO 1107	9			
dicações sobre as medições	S.				
Service and the service of the servi				20	
emperatura do ar, Ta (°C)				-20	
midade Relativa (%)				-20	
elocidade do ar (m/s)		· · ·		1,5	
emperatura média radi	ante (°C)			-20	
sultado global: Cálculo por IREQ					
esultado global: Cálculo por IREQ Relação entre a área da su	perfície do corpo humano vestido e a área da	fcl	2,02		
esultado global: Cálculo por IREQ Relação entre a área da su superfície do corpo human Temperatura média da pe	perfície do corpo humano vestido e a área da no nu	fcl	2,02	°C	
esultado global: Cálculo por IREQ Relação entre a área da su superfície do corpo human Temperatura média da pel Fração de pele molhada	perfície do corpo humano vestido e a área da no nu le	fcl Tsk wetness	2,02 32,42 0,12	°C %	
esultado global: Cálculo por IREQ Relação entre a área da su superfície do corpo huma Temperatura média da pel Fração de pele molhada Condutância térmica conv	perfície do corpo humano vestido e a área da no nu le rectiva unitária	fcl Tsk wetness hc	2,02 32,42 0,12 12,36	°C % W/(m² K)	
esultado global: Cálculo por IREQ Relação entre a área da su superfície do corpo human Temperatura média da pel Fração de pele molhada Condutância térmica conv Condutância térmica radio	perfície do corpo humano vestido e a área da no nu le rectiva unitária otiva unitária	fcl Tsk wetness hc hr	2,02 32,42 0,12 12,36 2,74	°C % W/(m ² K) W/(m ² K)	
esultado global: Cálculo por IREQ Relação entre a área da su superfície do corpo human Temperatura média da pel Fração de pele molhada Condutância térmica conv Condutância térmica radio Pressão parcial da água à	perfície do corpo humano vestido e a área da no nu le rectiva unitária otiva unitária temperatura ambiente	fcl Tsk wetness hc hr Pa	2,02 32,42 0,12 12,36 2,74 0,04	°C % W/(m² K) W/(m² K) kPa	
esultado global: Cálculo por IREQ Relação entre a área da su superfície do corpo human Temperatura média da pel Fração de pele molhada Condutância térmica conv Condutância térmica radio Pressão parcial da água à Temperatura superficial d	perfície do corpo humano vestido e a área da no nu le rectiva unitária otiva unitária temperatura ambiente o indumento	fcl Tsk wetness hc hr Pa Tcl	2,02 32,42 0,12 12,36 2,74 0,04 -16,88	°C % W/(m² K) W/(m² K) kPa °C	
esultado global: Cálculo por IREQ Relação entre a área da su superfície do corpo human Temperatura média da pel Fração de pele molhada Condutância térmica conv Condutância térmica radio Pressão parcial da água à Temperatura superficial d Isolamento evaporativo re	perfície do corpo humano vestido e a área da no nu le rectiva unitária otiva unitária temperatura ambiente o indumento esultante da vestimenta e do estrato limite	fcl Tsk wetness hc hr Pa Tcl Rt	2,02 32,42 0,12 12,36 2,74 0,04 -16,88 0,09	°C % W/(m ² K) W/(m ² K) kPa °C (m ² kPa)/V	
esultado global: Cálculo por IREQ Relação entre a área da su superfície do corpo human Temperatura média da pel Fração de pele molhada Condutância térmica conv Condutância térmica radio Pressão parcial da água à Temperatura superficial d Isolamento evaporativo re Fluxo térmico trocado por	perfície do corpo humano vestido e a área da no nu le rectiva unitária otiva unitária temperatura ambiente o indumento esultante da vestimenta e do estrato limite r evaporação do suor	fcl Tsk wetness hc hr Pa Tcl Rt E	2,02 32,42 0,12 12,36 2,74 0,04 -16,88 0,09 6,39	°C % W/(m ² K) W/(m ² K) kPa °C (m ² kPa)/V W/m ²	
esultado global: Cálculo por IREQ Relação entre a área da su superfície do corpo human Temperatura média da pel Fração de pele molhada Condutância térmica conv Condutância térmica radio Pressão parcial da água à Temperatura superficial d Isolamento evaporativo re Fluxo térmico trocado por	perfície do corpo humano vestido e a área da no nu le rectiva unitária otiva unitária temperatura ambiente o indumento esultante da vestimenta e do estrato limite r evaporação do suor r convecção e por evaporação na respiração	fcl Tsk wetness hc hr Pa Tcl Rt E Hres	2,02 32,42 0,12 12,36 2,74 0,04 -16,88 0,09 6,39 13,47	°C % W/(m ² K) W/(m ² K) kPa °C (m ² kPa)/W W/m ² W/m ²	
esultado global: Cálculo por IREQ Relação entre a área da su superfície do corpo human Temperatura média da pel Fração de pele molhada Condutância térmica conv Condutância térmica radio Pressão parcial da água à Temperatura superficial d Isolamento evaporativo re Fluxo térmico trocado por Fluxo térmico trocado por Fluxo térmico trocado por	perfície do corpo humano vestido e a área da no nu le vectiva unitária otiva unitária temperatura ambiente o indumento esultante da vestimenta e do estrato limite r evaporação do suor r convecção e por evaporação na respiração r irradiação	fcl Tsk wetness hc hr Pa Tcl Rt E Hres R	2,02 32,42 0,12 12,36 2,74 0,04 -16,88 0,09 6,39 13,47 17,23	°C % W/(m ² K) W/(m ² K) kPa °C (m ² kPa)/V W/m ² W/m ² W/m ²	
esultado global: Cálculo por IREQ Relação entre a área da su superfície do corpo human Temperatura média da pel Fração de pele molhada Condutância térmica conv Condutância térmica radio Pressão parcial da água à Temperatura superficial d Isolamento evaporativo re Fluxo térmico trocado por Fluxo térmico trocado por	perfície do corpo humano vestido e a área da no nu le rectiva unitária otiva unitária temperatura ambiente o indumento esultante da vestimenta e do estrato limite r evaporação do suor r convecção e por evaporação na respiração r irradiação r convecção	fcl Tsk wetness hc hr Pa Tcl Rt E Hres R C	2,02 32,42 0,12 12,36 2,74 0,04 -16,88 0,09 6,39 13,47 17,23 77,86	°C % W/(m ² K) W/(m ² K) kPa °C (m ² kPa)/V W/m ² W/m ² W/m ² W/m ² W/m ²	
esultado global: Cálculo por IREQ Relação entre a área da su superfície do corpo human Temperatura média da pel Fração de pele molhada Condutância térmica conv Condutância térmica radio Pressão parcial da água à Temperatura superficial d Isolamento evaporativo re Fluxo térmico trocado por Fluxo térmico trocado por Fluxo térmico trocado por Fluxo térmico trocado por Solamento térmico reque	perfície do corpo humano vestido e a área da no nu le rectiva unitária otiva unitária temperatura ambiente o indumento esultante da vestimenta e do estrato limite revaporação do suor r convecção e por evaporação na respiração r irradiação r convecção rido da vestimenta	fcl Tsk wetness hc hr Pa Tcl Rt E Hres R C IREQ	2,02 32,42 0,12 12,36 2,74 0,04 -16,88 0,09 6,39 13,47 17,23 77,86 0,52	°C % W/(m ² K) W/(m ² K) kPa °C (m ² kPa)/V W/m ² W/m ² W/m ² W/m ² (m ² K)/W	
esultado global: Cálculo por IREQ Relação entre a área da su superfície do corpo human Temperatura média da pel Fração de pele molhada Condutância térmica conv Condutância térmica radio Pressão parcial da água à Temperatura superficial d Isolamento evaporativo re Fluxo térmico trocado por Fluxo térmico trocado por Fluxo térmico trocado por Solamento térmico reque: Isolamento térmico reque	perfície do corpo humano vestido e a área da no nu le rectiva unitária otiva unitária temperatura ambiente o indumento esultante da vestimenta e do estrato limite r evaporação do suor r convecção e por evaporação na respiração r irradiação r convecção r irradiação	fcl Tsk wetness hc hr Pa Tcl Rt E Hres R C IREQ IREQ	2,02 32,42 0,12 12,36 2,74 0,04 -16,88 0,09 6,39 13,47 17,23 77,86 0,52 3,35	°C % W/(m ² K) W/(m ² K) kPa °C (m ² kPa)/W W/m ² W/m ² W/m ² W/m ² W/m ² (m ² K)/W clo	
esultado global: Cálculo por IREQ Relação entre a área da su superfície do corpo human Temperatura média da pel Fração de pele molhada Condutância térmica conv Condutância térmica radio Pressão parcial da água à Temperatura superficial d Isolamento evaporativo re Fluxo térmico trocado por Fluxo térmico trocado por Fluxo térmico trocado por Fluxo térmico trocado por Fluxo térmico trocado por Isolamento térmico reque: Isolamento térmico reque: Isolamento térmico intríne	perfície do corpo humano vestido e a área da no nu le vectiva unitária otiva unitária temperatura ambiente o indumento ssultante da vestimenta e do estrato limite revaporação do suor r convecção e por evaporação na respiração r irradiação r convecção rido da vestimenta rido da vestimenta seco da vestimenta	fcl Tsk wetness hc hr Pa Tcl Rt E Hres R C IREQ IREQ Icl	2,02 32,42 0,12 12,36 2,74 0,04 -16,88 0,09 6,39 13,47 17,23 77,86 0,52 3,35 4,2	°C % W/(m ² K) W/(m ² K) kPa °C (m ² kPa)/W W/m ² W/m ² W/m ² W/m ² (m ² K)/W clo clo	

Cálculo por DLE Relação entre a área da uperfície do corpo hun	Superfície do corpo humano vestido e a área da)79		
C álculo por DLE Relação entre a área da uperfície do corpo hur	superfície do corpo humano vestido e a área da			
Cálculo por DLE Relação entre a área da uperfície do corpo hui	superfície do corpo humano vestido e a área da			
Relação entre a área da uperfície do corpo hui	superfície do corpo humano vestido e a área da			
100 D D D D D D D D D D D D D D D D D D	nano nu	fcl	2,02	
Cemperatura média da	pele	Tsk	32,42	°C
Fração de pele molhada	a	wetness	0,12	%
Condutância térmica co	onvectiva unitária	hc	12,36	$W/(m^2 K)$
Condutância térmica ra	diotiva unitária	hr	2,74	$W/(m^2 K)$
Pressão parcial da água	a à temperatura ambiente	Pa	0,04	kPa
Cemperatura superficia	l do indumento	Tcl	-16,88	°C
solamento evaporativo	resultante da vestimenta e do estrato limite	Rt	0,09	$(m^2 kPa)/W$
luxo térmico trocado	por evaporação do suor	Е	6,39	W/m ²
luxo térmico trocado	por convecção e por evaporação na respiração	Hres	13,47	W/m^2
luxo térmico trocado	por irradiação	R	17,23	W/m ²
Iuxo térmico trocado	por convecção	С	77,86	W/m ²
solamento térmico req	uerido da vestimenta	IREQ	0,52	(m ² K)/W
solamento térmico req	uerido da vestimenta	IREQ	3,35	clo
solamento térmico intr	rínseco da vestimenta	Icl	4,2	clo
solamento térmico res	ultante da vestimenta	Iclr da input	1,6	clo
Cálculo por WCI				
ndice de resfriamento	por vento	WCI	1356	W/m2
cemperatura de resfria	mento	Tch	-20,2	°C
/elocidade relativa do	ar	var	1,8	m/s
Cálculo por RT				
Relação entre a área da uperfície do corpo hui	superfície do corpo humano vestido e a área da nano nu	fcl	1,31	
Cemperatura média da	pele	Tsk	34,42	°C
ração de pele molhada	a	wetness	0,05	%
Condutância térmica co	onvectiva unitária	hc	12,92	W/(m2 K)
Condutância térmica ra	diotiva unitária	hr	4,24	W/(m2 K)
ressão parcial da água	a à temperatura ambiente	Pa	1,17	kPa
emperatura superficia	l do indumento	Tcl	23,22	°C
solamento evaporativo	o resultante da vestimenta e do estrato limite	Rt	0,03	(m2 kPa)/W
fluxo térmico trocado	por evaporação do suor	E	6,10	W/m2
Fluxo térmico trocado	por convecção e por evaporação na respiração	Hres	3,83	W/m2
Fluxo térmico trocado	por irradiação	R	17,85	W/m2
luxo térmico trocado	por convecção	С	54,36	W/m2

Firm.Ver.=01.00 Firm.Date=2005/10/12 SN=12345678 Jser ID=00000000000000000 Cal.=Factory							
Description Channel 1 Description Channel 2 Description Channel 3 Description Channel 4	Probe = Pt1 Probe = RAD Probe = RH Probe = Hot	00 wire	Probe o Probe o Probe o Probe o	cal.=2004/ cal.=2005/ cal.=2002/ cal.=2002/	09/13 06/27 01/02 07/05	Probe SN= Probe SN= Probe SN= Probe SN=	87654321 05013380 04006422 04005175
Description Channel 5 Description Channel 6 Description Channel 7	Probe = not Probe = not Probe = not	present present present	Probe o Probe o Probe o	cal.=not p cal.=not p cal.=not p	resent resent resent	Probe SN= Probe SN= Probe SN=	not present not present not present
Description Channel 8 */ Sample interval= 1sec	Probe = not Tot	v	Probe o	cal.=not p Tv	RH	Probe SN=	not present
Jnit measure:	øC	m/s	1/s	øC	*	øC	lux
Date=2006/01/01 01:27:17	21.9	0.00	0.0	21.8	50.0	21.8	522.1
Date=2006/01/01 01:27:19	21.9	0.00	0.0	21.8	50.0	21.8	522.1
Date=2006/01/01 01:27:20	21.9	0.00	0.0	21.8	50.0	21.8	522.1
Date=2006/01/01 01:27:21	21.9	0.00	0.0	21.8	50.0	21.8	522.1
ace=2006/01/01 01:27:22 ace=2006/01/01 01:27:23	21.9	0.00	0.0	21.8	50.0	21.8	522.1
Date=2006/01/01 01:27:24	21.9	0.00	0.0	21.8	50.0	21.8	522.1
Date=2006/01/01 01:27:25	21.9	0.00	0.0	21.8	50.0	21.8	522.1
Date=2006/01/01 01:27:26	21.9	0.00	0.0	21.8	50.0	21.8	522.1
ate=2006/01/01 01:27:27	21.9	0.00	0.0	21.8	50.0	21.8	522.1
Date=2006/01/01 01:27:29	21.9	0.00	0.0	21.8	50.0	21.8	522.1
Date=2006/01/01 01:27:30	21.9	0.00	0.0	21.8	50.0	21.8	522.1
Date=2006/01/01 01:27:31	21.9	0.00	0.0	21.8	50.0	21.8	522.1
Date=2006/01/01 01:27:33	21.9	0.00	0.0	21.8	50.0	21.8	522.1
Date=2006/01/01 01:27:34	21.9	0.00	0.0	21.8	50.0	21.8	522.1
Date=2006/01/01 01:27:35	21.9	0.00	0.0	21.8	50.0	21.8	522.1
Date=2006/01/01 01:27:36 Date=2006/01/01 01:27:37	21.9	0.00	0.0	21.8	50.0	21.8	522.1
Date=2006/01/01 01:27:38	21.9	0.00	0.0	21.8	50.0	21.8	522.1
Date=2006/01/01 01:27:39	21.9	0.00	0.0	21.8	50.0	21.8	522.1
Date=2006/01/01 01:27:40	21.9	0.00	0.0	21.8	50.0	21.8	522.1
Date=2006/01/01 01:27:41	21.9	0.00	0.0	21.8	50.0	21.8	522.1
Date=2006/01/01 01:27:43	21.9	0.00	0.0	21.8	50.0	21.8	522.1
Date=2006/01/01 01:27:44	21.9	0.00	0.0	21.8	50.0	21.8	522.1
Date=2006/01/01 01:27:45	21.9	0.00	0.0	21.8	50.0	21.8	522.1
Date=2006/01/01 01:27:47	21.9	0.00	0.0	21.8	50.0	21.8	522.1
Date=2006/01/01 01:27:48	21.9	0.00	0.0	21.8	50.0	21.8	522.1
Date=2006/01/01 01:27:49	21.8	0.00	0.0	21.8	50.0	21.8	522.1
Date=2006/01/01 01:27:50	21.8	0.00	0.0	21.8	50.0	21.8	522.1
Date=2006/01/01 01:27:52	21.8	0.00	0.0	21.8	50.0	21.8	522.1
Date=2006/01/01 01:27:53	21.8	0.00	0.0	21.8	50.0	21.8	522.1
Date=2006/01/01 01:27:54	21.8	0.00	0.0	21.8	50.0	21.8	522.1
Date=2006/01/01 01:27:55 Date=2006/01/01 01:27:56	21.8	0.00	0.0	21.8	50.0	21.8	522.1
Date=2006/01/01 01:27:57	21.8	0.00	0.0	21.8	50.0	21.8	522.1
Date=2006/01/01 01:27:58	21.8	0.00	0.0	21.8	50.0	21.8	522.1
Date=2006/01/01 01:27:59	21.8	0.00	0.0	21.8	50.0	21.8	522.1
Date=2006/01/01 01:28:01	21.8	0.00	0.0	21.8	50.0	21.8	522.1
Date=2006/01/01 01:28:02	21.8	0.00	0.0	21.8	50.0	21.8	522.1
Date=2006/01/01 01:28:03	21.8	0.00	0.0	21.8	50.0	21.8	522.1
Date=2006/01/01 01:28:04	21.8	0.00	0.0	21.8	50.0	21.8	522.1
Date=2006/01/01 01:28:05	21.8	0.00	0.0	21.8	50.0	21.8	522.1
Date=2006/01/01 01:28:07	21.8	0.00	0.0	21.8	50.0	21.8	522.1
B . A							
13. CARACTERÍSTICAS TÉCNICAS

Instrumento

Dimensões (ComprimentoxLarguraxAltura) Peso Materiais Display pontos Área visível:

Condições de operação

Temperatura de funcionamento Temperatura de armazenamento Umidade relativa de funcionamento **Grau de proteção**

Incerteza do instrumento

Medição de pressão atmosférica com sensor interno

Prescisão Resolução Tempo de resposta Faixa de Medição

Medição de temperatura com sonda Pt100 Range de medição Pt100 Resolução

Precisão

Desvio de temperatura @20°C Desvio depois de 1 ano

Medição de umidade relativa (sensor capacitivo)

Range de medição Resolução

Precisão

Desvio de temperatura @20°C

Desvio depois de 1 ano

Energia

Adaptador de rede (código SWD10) Baterias Autonomia 220x180x50 mm 1.100 g (incluindo as baterias) ABS, policarbonato e alumínio Luz de Fundo, Matriz de Pontos 128x64

56x38mm

-5...50°C -25...65°C 0...90%RH sem condensação **IP64**

 ± 1 digito @ 20°C

±0.5hPa 0.1hPa 1s 600...1100hPa

-200...+650°C 0.01°C no range ±199.99°C, 0.1°C no range remanescente ± 0.01 °C no range ±199.99°C, ± 0.1 °C no range remanescente 0.003%/°C 0.1°C/ano

0...100%RH 0.1%RH ±0.1%RH 0.02%RH/°C 0.1%RH/ano

12Vdc/1A 4 Baterias tipo C-BABY 1,5V Sondas de temperatura e RH: 200 horas com baterias alcalinas 7800mAh

	Sonda de fio quente @ 5m/s: 100 horas com bateria alcalinas 7800mAh
Energia absorvida com instrumento desligado	$\sim < 45 \mu A$
Seguridade dos dados armazenados	Ilimitada
Conexões	
Entrada para sondas com modulo SICRAM	8 conectores x 8-polos macho DIN45326
Interface serial RS232C	
Tipo	RS232C electrically isolated
Taxa Baud	Pode ser ajustado de 1200 a 38400 baud
Bit de dados	8
Paridade	Nenhuma
Bit de parada	1
Controle de fluxo	Xon/Xoff
Comprimento do cabo serial	Max. 15 m
Interface USB	
Tipo	1.1 – 2.0 eletricamente isolada
Memória	dividido em 64 blocos.
Capacidade de memória	67600 registros para 8 entradas cada
Intervalo de armazenagem	selecionável entre: 15, 30 segundos, 1, 2, 5, 10, 15, 20, 30 minutos e 1 hora.
Intervalo de impressão	selecionável entre: 15, 30 segundos, 1, 2, 5, 10, 15, 20, 30 minutos e 1 hora.
Normas padrão EMC	
Segurança	EN61000-4-2, EN61010-1 nível 3
Descarga eletrostática	EN61000-4-2 nível 3
Variações elétricas transitórias	EN61000-4-4 nível 3,
	EN61000-4-5 nível 3
Variações de voltagem	EN61000-4-11
Suscetibilidade à interferência eletromagnétic	ca IEC1000-4-3
Emissão de interferência eletromagnética	EN55020 classe B

14. TABELAS EXPLANATÓRIAS SOBRE O USO DE SONDAS PARA MICROCLIMA

DeltaLog10 Software	Programa de Operação	Principais Índices Calculados	Ambientes	Padrão de referência
DeltaLog10BASIC	Prog.A	 t_a: Temperatura do ar t_r: Temperatura média de radiação PMV: Taxa media esperada PPD: Porcentagem de insatisfação DR: Risco Draught t_o: Temperatura de operação t_{eq}: Temperatura equivalente 	Moderado	UNI EN ISO 7730
DeltaLog10 Ambientes quentes	Prog.A	<pre>WBGT: Temperatura Globo de Bulbo úmido SWp: Taxa de transpiração Ep: Fluxo de Calor Evaporativo Previsto PHS: Modelo Tensão de Calor prevista</pre>	Severo Quente	UNI EN ISO 27243
DeltaLog10 Ambientes Frios	Prog.A	<pre>IREQ: Isolação requerida DLE: Tempo de exposição limite RT: Tempo de exposição limite WCI: Índice de resfriamento do vento</pre>	Severo Frio	UNI EN ISO 11079
DeltaLog10 Análise de DEsconforto	Prog.B	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Moderado	UNI EN ISO 7730
DeltaLog10BASIC	Prog.C	<pre>ta: Temperatura do ar RH-t: umidade-temperatura Va-t: Velocidade do vento- temperatura Lux: Illuminancia cd/m²: Luminancia µW/m²: Radiação W/m²: Radiação µmol/m²s: PAR CO₂: Concentração de dióxido de carbono (ppm) CO: Concentração de monóxido de carbono (ppm)</pre>	Uso geral	

14.1 Diagramade sondas para HD32.1 Programa operacional A: Análise de microclima

TP3207	Sonda de temperatura de bulbo seco.
TP3275	Sonda termômetro globo Ø 150 mm. (no lugar de TP3276)
TP3276	Sonda termômetro globo Ø 50mm. (no lugar de TP3275)
AP3203	Sonda fio quente Oni direcional.
HP3201	Sonda de bulbo úmido ventilação natural.
HP3217	Sonda combinada Umidade relativa e temperatura.
HP3217DM	Sonda dois sensores para medição da temperatura de bulbo úmido ventilação
	natural e da temperatura de bulbo seco (no lugar de: HP3201 e TP3207).

A tabela a seguir mostra as sondas necessárias para medição de índices de microclima.

Os seguintes índices são calculados usando o software DeltaLog10BASIC:

Cada linha indica a combinação das sondas a serem usadas para os diferentes cálculos de índices.

	TP3207	TP3275	TP3276	AP3203	HP3201	HP3217	HP3217DM
	•						
							•
t _a : Temperatura do ar.						•	•
						•	
	•	•		•			
	•		•	•			
t_r : Temperatura media de		•		•			•
radiação.			•	•			•
		•		•		•	
			•	•		•	
	•	•		•		•	
	•		•	•		•	
		•		•		•	•
PMV: Taxa media esperada.		-					
PPD: Porcentagem de insatisfação			•				•
		•		•		•	
			•	•		•	
	•			•			
DR: Risco Draught.				•			•
				•		•	
	•	•		•			
	•		•	•			
		•		•			•
t_0 : Temperatura de operação.			٠	٠			•
		•		•		•	
			•	•		•	
+ · Temperatura equivalente			-	-			
(requerida para a medição do	•						
nreggão atmosfárica)						•	
pressao acmosterica/						•	•

Os indices a seguir são calculados usando o software DeltaLog10 Ambientes Quentes:

Cada linha indica a combinação de sondas a ser usada para cálculo dos diferentes índices

		TP3207	TP3275	TP3276	AP3203	HP3201	HP3217	HP3217DM
WBGT Indoor: Temperatura	Globo de		•			•		
Bulbo úmido				•		•		
		•	•			•		
WBGT Outdoor: Temperatura de		•		•		•		
Bulbo úmido e Termômetr		•			•		•	
com radiação solar			•		•		•	
			•			•	•	
				•		•	•	
SW _p : Taxa de transpiração	C	•	•		•		•	
		•		•	•		•	
E _p : Fluxo de Calor Eva	aporativo		•		•		•	•
Previsto				•	•		•	•
			•		•		•	
				•	•		•	
⁽¹⁾ T _{re}		•	•		•		•	
Perda de água		•		•	•		•	
Dlim tre			•		•		•	•
D _{limloss50}				•	•		•	•
$D_{limloss95}$			•		•		•	
				•	٠		•	

		-
(1)	T _{re} :	Temperatura Retal esperada
	Perda de água:	Perda de Água
	D _{lim tre} :	Tempo máximo de exposição permitido para Acumulação Térmica
	D _{limloss50} :	Tempo máximo de exposição permitido para Perda de água, pessoa média
	D _{limloss95} :	Tempo máximo de exposição permitido para Perda de água, 95% da População Trabalhadora

Os índices a seguir são calculados usando o software **DeltaLog10 Ambientes Frios**:

Cada linha indica a combinação de sondas a ser usada para cálculo dos diferentes índices

_			TP3207	TP3275	TP3276	AP3203	HP3201	71254H	HP3217DM
(2)	IREQ:	Isolação necessária	•	•		•		•	
	DLE:	Tempo limite de	•		٠	•		•	
		exposição		•		•		•	•
	RT:	Tempo limite de			٠	•		•	•
		exposição		•		•		•	
	WCI:	Índiao do Posfriamonto				٠		•	
		do vento	•			•			
						•			•

(2) Com IREQ, DLE, RT, WCI você pode calcular: Razão entre a superfície do corpo humano vestido e superfície do corpo humano despido Temperatura media da pele Fração de pele úmida Unidade de condutividade termal Unidade de radiação de condutividade termal Pressão parcial de água a temperatura ambiente Temperatura de superfície de tecido Isolação de evaporação resultante de vestuário e comada limite Fluxo de troca termal devido a evaporação de transpiração Fluxo de troca termal devido à convecção e evaporação na respiração Fluxo de troca termal devido à radiação Fluxo de troca termal devido à convecção Tempo de exposição limite Isolação termal do vestuário requerido Isolação termal Intrínseca do vestuário

14.2 Diagrama das sondas para HD32.1 Programa operacional B: Análise de Desconforto

- **TP3227K** Sonda de temperatura composta de sondas autônomas, temperatura de cabeça e abdômen.
- **TP3227PC** Sonda de temperatura composta de sondas autônomas, temperatura de tornozelos e piso.
- **TP3207P** Sonda de temperatura sensor Pt100, temperatura do piso.
- **TP3207TR** Sonda para medição de temperatura radiante (radiômetro efetivo)

Na tabela seguinte estão relacionadas as sondas requeridas para medições de índices de microlima.

Os seguintes índices são calculados usando o software DeltaLog10 Análise de Desconforto:

Cada linha indica a combinação de sondas a ser usada para o cálculo dos diferentes índices

		TP3227K	TP3227PC	4 70284T	TF3207TR
PD _v :	Insatisfação com a diferença vertical de temperatura (cabeça-tornozelos).	٠		•	
PD _f :	Insatisfação com a temperatura do piso.		•	•	
PD _∆ :	Insatisfação com a assimetria radiante.				•

15. CÓDIGOS DE PEDIDO

 HD32.1 Basic Kit: O kit é composto do instrumento HD32.1, Programa Operacional A: Análise de Microclima, 4 baterias alcalinas 1.5V tipo C/Baby, operação manual.
 Software DeltaLog10 Básico Ambiente Moderado (Windows 98 a

Software DeltaLog10 Basico Ambiente Moderado (Windows 98 a Windows XP).

Software DeltaLog10 Ambiente Quente:

Este software requer o Kit HD32.1 Básico Completo.

Software DeltaLog10 Ambientes Frios:

Este software requer o Kit HD32.1 Básico Completo.

Software DeltaLog10 Análise de Desconforto :

Este software requer o **Programa Operacional B: Análise de DEsconforto** e o **Kit HD32.1 Básico Completo.**

HD32.1 Programa B – Análise de Desconforto:

Programa para HD32.1 realizar medições de desconforto em ambientes moderados. É necessário o software The DeltaLog10 Análise de Desconforto.

HD32.1 Programa C – Grandezas Físicas:

Programa para HD32.1 realizar medições de temperatura, umidade relativa, luz e velocidade de ar, concentração de CO₂ e de CO.

Sondas, suporte, maleta e cabos devem ser pedidos em separado.

Accessórios:	
VTRAP32	Tripé completo com 6 cabeças de entrada e 4 suportes de sonda código HD3218K
9CPRS232	Cabo de conexão com conectores D 9-polos fêmea para RS232C.
CP22	Cabo de conexão USB 2.0 conector tipo A - conector tipo B.
BAG32	Maleta para instrumento HD32 e acessórios.
SWD10	Fornecedor de energia estabilizada voltagem de rede 100-240Vac/12Vdc-
HD3218K	Haste para sondas
AM32	Duas hastes de presilha para duas sondas
AQC	200 cc água destilada e no. 3 cadarços para sondas HP3201 ou HP3217DM

Os Laboratórios Metrológicos Delta Ohm são credenciados pela SIT com relação à Temperatura, Umidade, Pressão, Fotometria/Radiometria, Acústicos e Velocidade do Vento. Sob pedido, as sondas podem ser fornecidas com certificado de calibração.

15.1 SONDAS PROGRAMAS OPERACIONAIS A E B

A: Análise de Microclima

B: Análise de DEsconforto

- TP3207 Sonda de temperatura sensor Pt100. Diâmetro da haste da sonda Ø 14mm, comprimento140 mm. Comprimento do cabo 2 metros. Completa com módulo SICRAM.
 Usado para cálculo dos seguintes índices: IREQ, WCI, DLE, RT, PMV, PPD, WBGT, SR. Usado para cálculo da temperatura média de radiação.
- TP3275 Sonda termômetro globo sensor Pt100, globo Ø 150 mm.
 Diâmetro da haste da sonda Ø 14mm, comprimento 110 mm. Comprimento do cabo 2 metros. Completa com módulo SICRAM.
 Usado para medição de: temperatura média de radiação, WBGT.
- TP3276 Sonda termômetro globo sensor Pt100, globo Ø 50 mm.
 Diâmetro da haste da sonda Ø 8 mm, comprimento 110 mm. Comprimento do cabo 2 metros. Complete with SICRAM module.
 Usado para medição de: temperatura média de radiação, WBGT.
- TP3227K Sonda de temperatura composta de 2 sondas autônomas de temperatura, sensor Pt100. Diâmetro da haste da sonda Ø 14mm, comprimento 500 mm. Comprimento do cabo 2 metros. Completa com 2 módulos SICRAM e haste telescópica Ø 14 mm, comprimento 450 mm TP3227.2.
 Usado para medição de desconforto local devido à gradiente vertical de temperatura. Pode ser usada para estudar pessoas em pé ou sentada. A altura da

sonda pode ser ajustada.

- **TP3227PC** Sonda de temperatura composta de 2 sondas autônomas de temperatura, sensor Pt100, uma para medição de temperatura ao nível do piso (Ø 70 mm, altura 30 mm), a outra para medição de temperatura na altura do tornozelo (Ø 3 mm, altura 100 mm). Comprimento do cabo 2 metros. Completa com 2 módulos SICRAM. Usada para medição do **desconforto local devido à gradiente vertical de temperatura**.
- **TP3207P** Sonda de temperatura sensor Pt100 para medição de temperatura ao nível do piso (Ø 70 mm, altura 30 mm). Comprimento do cabo 2 metros. Completa com módulo SICRAM.

Usada para medição do desconforto local devido à gradiente vertical de temperatura.

TP3207TR Sonda para medição de temperatura radiante. Haste da sonda Ø 16 mm, comprimento 250 mm. Comprimento do cabo 2 metros. Completo com módulo SICRAM.

Usada to estimar a porcentagem de insatisfação com a assimetria radiante.

- AP3203 Sonda de fio quente oni direcional. Range de medição: Velocidade do vento 0÷5 m/s, temperatura 0÷100 °C. Haste da sonda Ø 14 mm, comprimento 110 mm. Comprimento do cabo 2 metros. Completa com modulo SICRAM. Usada para cálculo dos seguintes índices: IREQ, WCI, DLE, RT, PMV, PPD, SR. Usada para cálculo da temperatura média de radiação.
- **HP3201** Sonda de bulbo úmido ventilação natural. Sensor Pt100 sensor. Haste da sonda Ø 14 mm, comprimento 110 mm. Comprimento do cabo 2 metros. Completa com

módulo SICRAM, cadarço sobressalente e recipiente com 50 cc de água destilada e cadarço sobressalente.

Usada para medição de: WBGT.

- HP3217 Sonda combinada de umidade relativa e temperatura. Sensor capacitivo para umidade relativa, sensor de temperatura Pt100. Haste da sonda Ø 14 mm, comprimento 110 mm. Comprimento do cabo 2 metros. Completa com modulo SICRAM.
 Usada para cálculo dos seguintes índices: IREQ, WCI, DLE, RT, PMV, PPD, SR.
- **HP3217DM** Sonda de temperatura dupla com para bulbo úmido ventilação natural e temperatura (bulbo seco). Haste da sonda Ø 14 mm, comprimento 110 mm. Comprimento do cabo 2 metros. Completa com duplo modulo SICRAM, cadarço sobressalente e recipiente com 50 cc de água destilada.

15.2 SONDAS PARA PROGRAMA OPERACIONAL C: GRANDEZAS FÍSICAS

15.2.1 Sondas de Temperatura completas com módulo SICRAM

- **TP472I** Sonda de imersão, sensor Pt100, Haste Ø 3 mm, comprimento 300 mm. Comprimento do cabo 2 metros.
- **TP472I.0** Sonda de imersão, sensor Pt100. Haste Ø 3 mm, comprimento 230 mm. Comprimento do cabo 2 metros.
- **TP473P.0** Sonda de penetração, sensor Pt100. Haste Ø 4 mm, comprimento 150 mm. Comprimento do cabo 2 metros.
- **TP474C.0** Sonda de contato, sensor Pt100. Haste Ø 4 mm, comprimento 230 mm. Superfície de contato Ø 5mm. Comprimento do cabo 2 metros.
- **TP475A.0** Sonda de ar, sensor Pt100. Haste Ø 4 mm, comprimento 230 mm. Comprimento do cabo 2 metros.
- **TP472I.5** Sonda de imersão, sensor Pt100. Haste Ø 6 mm, comprimento 500 mm. Comprimento do cabo 2 metros.
- **TP472I.10** Sonda de imersão, sensor Pt100. Haste Ø 6 mm, comprimento 1000 mm. Comprimento do cabo 2 metros.

15.2.2 Sondas combinadas de Umidade Relativa e Temperatura completas com módulo h SICRAM

- **HP472AC** Sonda combinada %RH e temperatura, dimensões Ø 26x170 mm. Cabo de conexão comprimento 2 metros.
- **HP473AC** Sonda cmbinada de %RH e temperatura. Tamanho do manípulo Ø 26x130 mm, sonda Ø 14x110 mm. Cabo de conexão comprimento 2 metros.
- **HP474AC** Sonda combinada de %RH e temperatura. Tamanho do manípulo Ø 26x130 mm, sonda Ø 14x 210 mm. Cabo de conexão comprimento 2 metros.
- **HP475AC** Sonda combinada de %RH e temperatura. Cabo de conexão comprimento 2 metros. Manípulo Ø 26x110mm. Haste de aço inoxidável Ø 12x560mm. Ponto Ø 13.5x75mm.

- HP475AC.1 Sonda combinada de %RH e temperatura. Sonda de aço inoxidável Ø 14x500 mm com filtro de aço sinterizado 20μm. Manípulo 80 mm. Cabo de conexão comprimento 2 metros.
- **HP477DC** Sonda combinada de %RH e temperatura. Cabo de conexão comprimento 2 metros. Manípulo Ø 26x110mm. Haste da sonda 18x4mm, comprimento 520 mm.

15.2.3 Sondas combinadas de Velocidade do Vento e Temperatura completas com módulo SICRAM

SONDAS DE FIO QUENTE

- AP471 S1 Sonda telescópica de fio quente, range de medição: 0.05...40m/s. Comprimento do cabo 2 metros.
- AP471 S2 Sonda telescópica de fio quente oni direcional , range de medição: 0.05...5m/s. Comprimento do cabo 2 metros.
- AP471 S3 Sonda telescópica de fio quente com ponta terminal para posicionamento fácil, range de medição: 0.05...40m/s. Comprimento do cabo 2 metros.
- AP471 S4 Sonda telescópica de fio quente oni direcional com base, range de medição: 0.05...5m/s. Comprimento do cabo 2 metros.
- AP471 S5 Sonda telescópica de fio quente oni direcional, range de medição: 0.05...5m/s. Comprimento do cabo 2 metros.

SONDAS VENTOINHA

- AP472 S1 Sonda Ventoinha com termopar K, Ø 100 mm. Velocidade de 0.6 a 25 m/s; temperatura de -25 a 80°C. Comprimento do cabo 2 metros.
- AP472 S2 Sonda Ventoinha, Ø 60 mm. Range de medição: 0.3...20m/s. Comprimento do cabo 2 metros.
- AP472 S4L Sonda Ventoinha, Ø 16 mm. Velocidade de 0.8 a 20 m/s. Comprimento do cabo 2 metros.
- **AP472 S4LT** Sonda Ventoinha, Ø 16 mm. Velocidade de 0.8 a 20 m/s. Temperatura de -30 to 120°C com sensor termopar K ^(*).Comprimento do cabo 2 metros.
- **AP472 S4H** Sonda Ventoinha, Ø 16 mm. Velocidade de 10 to 50 m/s. Comprimento do cabo 2 metros.
- AP472 S4HT Sonda Ventoinha, Ø 16 mm. Velocidade de 10 a 50 m/s. Temperatura de -30 a 120°C com sensor termopar K ^(*).Comprimento do cabo 2 metros.

15.2.4 Sondas fotométrica/radiométrica para medição de Luz completas com módulo SICRAM

- **LP 471 PHOT** Sonda fotométrica para medição de **ILUMINÂNCIA** completa com módulo SICRAM, resposta espectral de acordo com padrão de visão fotópica, difusor para correção de cosseno. Range de medição: 0.01 lux...200.10³ lux.
- LP 471 LUM 2 Sonda fotométrica para medição de LUMINÂNCIA completa com módulo SICRAM, resposta espectral de acordo com padrão de visão fotópica, ângulo de visão 2°. Range de medição: 0.1 cd/m²...2000·10³ cd/m².

^{(&}lt;sup>*</sup>)Limite de temperatura se refere ao local da sonda onde estão o ventoinha e o sensor e não ao manípulo, ao cabo e ao eixo telescópico nos quais a temperatura máxima de trabalho é 80°C.

- LP 471 PAR Sonda quântica radiométrica para medição de fluxo de fótons através do range PAR de clorofila (Radiação Ativa Fotossinteticamente 400 nm...700 nm) completa com módulo SICRAM, medições em µmol/m²s, difusor para correção de cosseno. Range de medição: 0.01µmol/m²s...10µ10³µmol/m²s
- LP 471 RAD Sonda radiométrica para medição de RADIAÇÃO completa com módulo SICRAM; no range espectral de 400 nm...1050 nm, difusor para correção de cosseno. Range de medição: 0.1·10⁻³W/m²...2000 W/m².
- LP 471 UVA Sonda radiométrica para medição de RADIAÇÃO completa com módulo SICRAM; no range espectral UVA 315 nm...400 nm, pico 360 nm, difusor de quartzo para correção de cosseno. Range de medição: 0.1·10⁻³W/m²...2000 W/m².
- LP 471 UVB Sonda radiométrica para medição de RADIAÇÃO completa com módulo SICRAM; no range espectral UVB 280 nm...315 nm, pico 305 nm, difusor de quartzo para correção de cosseno. Range de medição: 0.1·10⁻³W/m²...2000 W/m².
- LP 471 UVC Sonda radiométrica para medição de RADIAÇÃO completa com módulo SICRAM, no range espectral UVC 220 nm...280 nm, pico 260 nm, difusor de quartzo para correção de cosseno. Range de medição: 0.1·10⁻³W/m²...2000 W/m².
- **LP 471 ERY** Sonda radiométrica para medição de **RADIAÇÃO EFETIVA TOTAL** (W_{eff}/m^2) ponderada de acordo com a curva de ação UV (CEI EN 60335-2-27) completa com módulo SICRAM. Range espectral: 250 nm...400 nm, difusor de quartzo para correção de cosseno. Range de medição: $0.1 \cdot 10^{-3} W_{eff}/m^2...2000 W_{eff}/m^2$.
- **LP 32 F/R** Haste para sondas fotométricas-radiométricas para medição de luz LP471...

15.2.5 Sonda para medição de dióxido de carbonoo CO₂ completa com modulo SICRAM

HD320B2	Sonda para medição de dióxido de carbono CO ₂ completa com modulo
	SICRAM, com sensor infravermelho dupla fonte. Faixa de medição:
	05000ppm. Cabo L=2m.
MINICAN 12A	Cilindro de nitrogênio nara calibração de CO ₂ a Onnm. Volume 12 litros

- MINICAN.12A Cılındro de nıtrogênio para calibração de CO₂ a 0ppm. Volume 12 litros. Com válvula reguladora.
- MINICAN.12A1Cilindro de nitrogênio para calibração de CO2 a 0ppm. Volume 12 litros.
Sem válvula reguladora
- **HD37.37** Kit de tubos de conexão entre o sensor e o cilindroe MINICAN.12A para calibração de CO₂.

15.2.6 Sonda para medição de monoxído de carbno CO completa com modulo SICRAM

- HD320A2Sonda para medição de monóxido de carbono CO completa com modulo
SICRAM, com sensor eletroquímico edois eletrodos. Faixa de medição:
0...500ppm. Cabo L=2m.
- HD320AS2 Suporte magnético para fixar a sonda HD320A2 ao corpo da sonda HD320B2.

- MINICAN.12ACilindro de nitrogênio para calibração de
Com válvula reguladora.CO a 0ppm. Volume 12 litros.MINICAN.12A1Cilindro de nitrogênio para calibração de
Sem válvula reguladora.CO a 0ppm. Volume 12 litros.ECO-SURE-2E COSensor de CO para substituição.
- **HD37.36** Kit de tubos de conexão entre o sensor e o cilindroe MINICAN.12A para calibração de CO

CERTIFICATO DI CONFORMITÀ DEL COSTRUTTORE

MANUFACTURER'S CERTIFICATE OF CONFORMITY

rilasciato da

issued by

DELTA OHM SRL STRUMENTI DI MISURA

DATA 200

2009/02/09

Si certifica che gli strumenti sotto riportati hanno superato positivamente tutti i test di produzione e sono conformi alle specifiche, valide alla data del test, riportate nella documentazione tecnica.

We certify that below mentioned instruments have been tested and passed all production tests, confirming compliance with the manufacturer's published specification at the date of the test.

La riferibilità delle misure ai campioni internazionali e nazionali delle unità del SIT è garantita da una catena di riferibilità ininterrotta che ha origine dalla taratura dei campioni di laboratorio presso l'Istituto Primario Nazionale di Ricerca Metrologica.

The traceability of measures assigned to international and national reference samples of SIT units is guaranteed by a uninterrupted reference chain which source is the calibration of laboratories samples at the Primary National Metrological Research Institute.

Tipo Prodotto: *Product Type:* **Thermal Microclimate**

Nome Prodotto: HD32.1 *Product Name:*

Responsabile Qualità Head of Quality

DELTA OHM SRL 35030 Caselle di Selvazzano (PD) Italy Via Marconi, 5 Tel. +39.0498977150 r.a. - Telefax +39.049635596 Cod. Fisc./P.Iva IT03363960281 - N.Mecc. PD044279 R.E.A. 306030 - ISC. Reg. Soc. 68037/1998

GUARANTIA

CONDIÇÕES DE GARANTIA

Todos os instrumentos DELTA OHME foram submetidos a testes rigorosos e são garantidos por 24 meses da data da compra. A DELTA OHM vai reparar ou substituir quaisquer peças que ela considerar ineficientes dentro do período de garantia e livre de encargos. A substituição completa está excluída e nenhum pedido de perdas e danos será reconhecido. A garantia não inclui quebra ou danos acidentais devido ao transporte, negligência, uso incorreto, conexão incorreta com voltagem diferente daquela considerada para o instrumento. Além disso, a garantia deixa de ser válida se o instrumento for reparado ou adulterado por terceiros não autorizados. O instrumento deve ser enviado ao vendedor sem encargos de transporte. Para quaisquer disputas o fórum competente é a Corte de Pádua.

Os aparelhos elétricos e eletrônicos com o seguinte símbolo não podem ser descartados em lixos públicos. Em cumprimento à Diretriz EU 2002/96/EC, aos usuários europeus de aparelhos elétricos e eletrônicos é possível devolver os aparelhos usados ao Distribuidor ou Fabricante quando da compra de um novo. O descarte ilegal de aparelhos elétricos e eletrônicos é punido por multa administrativa pecuniária.

Esta garantia deve ser enviada junto com o aparelho para nosso centro de assistência técnica. N.B.: A Garantia é válida somente se o cupon estiver corretamente preenchido e com todos os detalhes.

Tipo do instrumento 🛛 HD32.1

N1 /		/ .	
Numero	d D	CALIA	
Numero	uc	SCIIC	

RENEWALS

Data	Data	
Inspetor	Inspetor	
Data	Data	
Inspetor	Inspetor	
Data	Data	
Inspetor	Inspetor	

CONFORMIDADE CE	
Segurança	EN61000-4-2, EN61010-1 NÍVEL 3
Descarga eletrostática	EN61000-4-2 NÍVEL 3
Transientes elétricos	EN61000-4-4 NÍVEL 3
Variações de voltagem	EN61000-4-11
Suscetibilidade à interferência eletromagnética	IEC1000-4-3
Emissão de interferência eletromagnética	EN55020 classe B